期刊文献+
共找到51,192篇文章
< 1 2 250 >
每页显示 20 50 100
Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell 被引量:2
1
作者 Chao Liu Zhen Geng +6 位作者 Xukang Wang Wendong Liu Yuwei Wang Qihan Xia Wenbo Li Liming Jin Cunman Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期348-369,I0009,共23页
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t... Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 HYDROGEN Water electrolysis Anion exchange membrane electrolysis cell
下载PDF
Advancements,strategies,and prospects of solid oxide electrolysis cells(SOECs):Towards enhanced performance and large-scale sustainable hydrogen production 被引量:1
2
作者 Amina Lahrichi Youness El Issmaeli +1 位作者 Shankara S.Kalanur Bruno G.Pollet 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期688-715,共28页
Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scal... Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts. 展开更多
关键词 Solid oxide electrolysis cells Proton-SOECs Oxygen-SoECs Hybrid-SOECs Intermediate-high temperature electrolysers Hydrogenproduction
下载PDF
A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis 被引量:1
3
作者 Junting Dong Chang Yu +5 位作者 Hui Wang Lin Chen Hongling Huang Yingnan Han Qianbing Wei Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期486-495,I0011,共11页
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c... Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique. 展开更多
关键词 Nickel-iron hydroxide electrocatalysts Highly selective seawater electrolysis Weak nucleophilicity Oxygen evolution reaction Hydrogen
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:1
4
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 Alkaline water electrolysis HYDROGEN ELECTROCATALYSTS Ni_(3)S_(2)
下载PDF
Low carbon alcohol fuel electrolysis of hydrogen generation catalyzed by a novel and effective Pt–CoTe/C bifunctional catalyst system
5
作者 Yang Zhou Lice Yu +2 位作者 Jinfa Chang Ligang Feng Jiujun Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期758-770,共13页
Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts ... Low carbon alcohol fuels electrolysis under ambient conditions is promising for green hydrogen generation instead of the traditional alcohol fuels steam reforming technique,and highly efficient bifunctional catalysts for membrane electrode fabrication are required to drive the electrolysis reactions.Herein,the efficient catalytic promotion effect of a novel catalyst promoter,CoTe,on Pt is demonstrated for low carbon alcohol fuels of methanol and ethanol electrolysis for hydrogen generation.Experimental and density functional theory calculation results indicate that the optimized electronic structure of Pt–CoTe/C resulting from the synergetic effect between Pt and CoTe further regulates the adsorption energies of CO and H*that enhances the catalytic ability for methanol and ethanol electrolysis.Moreover,the good water activation ability of CoTe and the strong electronic effect of Pt and CoTe increased the tolerance ability to the poisoning species as demonstrated by the CO-stripping technique.The high catalytic kinetics and stability,as well as the promotion effect,were also carefully discussed.Specifically,71.9%and 75.5%of the initial peak current density was maintained after 1000 CV cycles in acid electrolyte for methanol and ethanol oxidation;and a low overpotential of 30 and 35 mV was required to drive the hydrogen evolution reaction in methanol and ethanol solution at the current density of 10 mA cm^(-2).In the two-electrode system for alcohol fuels electrolysis,using the optimal Pt–CoTe/C catalyst as bi-functional catalysts,the cell potential of 0.66 V(0.67 V)was required to achieve 10 mA cm^(-2) for methanol(ethanol)electrolysis,much smaller than that of water electrolysis(1.76 V).The current study offers a novel platform for hydrogen generation via low carbon alcohol fuel electrolysis,and the result is helpful to the catalysis mechanism understanding of Pt assisted by the novel promoter. 展开更多
关键词 Methanol electrolysis Ethanol electrolysis Cobalt telluride Pt-based electrocatalyst Hydrogen evolution reaction
下载PDF
Study of three-dimensional spatial diffuse discharge in contact electrode structure applied to air purification
6
作者 Shuai XU Wenzheng LIU +3 位作者 Jiaying QIN Yiwei SUN Xitao JIANG Qi QI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期73-81,共9页
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ... In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out. 展开更多
关键词 dielectric barrier discharge three-dimensional spatial discharge atmospheric pressure air diffusion discharge air purification
下载PDF
Comparative analysis of single-crater parameters in ultrasonic-assisted and unassisted micro-EDM of Ti6Al4V using discharge plasma imaging
7
作者 Sohaib Raza Chandrakant Nirala 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期11-24,共14页
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi... Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model. 展开更多
关键词 Ultrasonic vibration discharge crater Plasma diameter Single discharge
下载PDF
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
8
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water electrolysis Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques
下载PDF
Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge
9
作者 Wenhao ZHOU Dongxuan ZHANG +3 位作者 Xiaohui DUAN Xi ZHU Feng LIU Zhi FANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期79-87,共9页
Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB... Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources. 展开更多
关键词 dielectric barrier discharge dielectric material UNIFORMITY discharge characteristics
下载PDF
On the evolution and formation of discharge morphology in pulsed dielectric barrier discharge
10
作者 陈星宇 李孟琦 +3 位作者 王威逸 张权治 彭涛 熊紫兰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期101-113,共13页
The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten... The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions. 展开更多
关键词 low-temperature plasma dielectric barrier discharge discharge morphology particle distribution electric thrust
下载PDF
Predictors of Abnormal Vaginal Discharge among Women of Reproductive Age in Southeast Nigeria
11
作者 Jideuma Egwim Victor Dike +5 位作者 Hope Igbonagwam Nkechinyere Oke Uzoma Amajo Akuchi Okafor Angela Izegbune Ijedimma Okafor 《International Journal of Clinical Medicine》 CAS 2024年第7期240-256,共17页
Background: An abnormal vaginal discharge is a common complaint among women of reproductive age, and it can indicate serious conditions like pelvic inflammatory disease and cervical cancer. This study aimed to assess ... Background: An abnormal vaginal discharge is a common complaint among women of reproductive age, and it can indicate serious conditions like pelvic inflammatory disease and cervical cancer. This study aimed to assess the predictors of abnormal vaginal discharge in women of reproductive age group in Imo State, Southeast Nigeria. Methods: A cross-sectional study was conducted among 368 women of reproductive age group attending the clinic at Federal University Teaching Hospital Owerri, in Imo State, Nigeria. Respondents were recruited using a systematic sampling technique. Data were collected using a pre-tested interviewer-administered questionnaire. Multivariable analysis was performed to determine predictors of abnormal vaginal discharge. Statistical significance was set at p Results: The mean age of the respondents was 30 ±  4.5 years. Predictors of abnormal vaginal discharge were: age 36 - 45 years (OR: 4.5;95% C.I: 1.023 - 8.967, p = 0.041), being a student (OR: 2.4: 95% C.I: 1.496 - 7.336, p = 0.003), use of oral contraceptives (OR: 3.4;95% C.I: 1.068 - 6.932, p = 0.010), use of water cistern (OR: 4.7;C.I: 1.654 - 5.210, p = 0.028) anal hygiene practices (OR: 2.7;95% C.I: 1.142 - 4.809, p Conclusion: These findings suggest that targeted sexual and reproductive health interventions should be provided to reduce the risk of abnormal vaginal discharge in women of reproductive age group. 展开更多
关键词 PREDICTORS ABNORMAL VAGINAL discharge
下载PDF
Novel method for identifying the stages of discharge underwater based on impedance change characteristic
12
作者 高崇 康忠健 +3 位作者 龚大建 张扬 王玉芳 孙一鸣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期133-145,共13页
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel... It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761. 展开更多
关键词 discharge underwater discharge stage identification impedance characteristics strong tracking filter
下载PDF
Experimental study on the effect of H_(2)O and O_(2) on the degradation of SF_(6) by pulsed dielectric barrier discharge
13
作者 李亚龙 万昆 +5 位作者 王宇非 张晓星 杨照迪 傅明利 卓然 王邸博 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期125-131,共7页
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a... SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided. 展开更多
关键词 SF_(6) pulsed dielectric barrier discharge DEGRADATION discharge gas
下载PDF
Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc
14
作者 Min ZHU Yuchen PING +2 位作者 Yinghao ZHANG Chaohai ZHANG Shuqun WU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期88-96,共9页
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the... In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder. 展开更多
关键词 gliding arc discharge atmospheric pressure plasma multiphase discharge mass transfer
下载PDF
Classification and technical target of water electrolysis for hydrogen production
15
作者 Kahyun Ham Sooan Bae Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期554-576,I0012,共24页
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro... Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology. 展开更多
关键词 Water electrolysis Hydrogen production Technical target ELECTROCHEMISTRY
下载PDF
Integrated design and performance optimization of three-electrode sliding discharge plasma power supply
16
作者 Borui ZHENG Linwu WANG +4 位作者 Jianbo ZHANG Shaojie QI Yuhong CHEN Haodong LIU Dongliang BIAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期152-161,共10页
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par... The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation. 展开更多
关键词 plasma flow control dielectric barrier discharge three-electrode sliding discharge plasma power supply
下载PDF
Analyses of nonequilibrium transport in atmospheric-pressure direct-current argon discharge under different modes
17
作者 Ziming ZHANG Chuan FANG +2 位作者 Yaoting WANG Lanyue LUO Heping LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期107-126,共20页
The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications ... The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature. 展开更多
关键词 atmospheric-pressure plasma direct-current gas discharge discharge mode mode transition power density in cathode sheath
下载PDF
Covalently Bonded Ni Sites in Black Phosphorene with Electron Redistribution for Efficient Metal‑Lightweighted Water Electrolysis
18
作者 Wenfang Zhai Ya Chen +5 位作者 Yaoda Liu Yuanyuan Ma Paranthaman Vijayakumar Yuanbin Qin Yongquan Qu Zhengfei Dai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期233-245,共13页
The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers... The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers the high capability of black phosphorene(BP)with hydrogen and oxygen evolution reaction(HER/OER)bifunctionality.Through a facile in situ electro-exfoliation route,the ionized Ni sites are covalently functionalized in BP nanosheets with electron redistribution and controllable metal contents.It is found that the as-fabricated Ni-BP electrocatalysts can drive the water splitting with much enhanced HER and OER activities.In 1.0 M KOH electrolyte,the optimized 1.5 wt%Nifunctionalized BP nanosheets have readily achieved low overpotentials of 136 mV for HER and 230 mV for OER at 10 mA cm^(−2).Moreover,the covalently bonding between Ni and P has also strengthened the catalytic stability of the Ni-functionalized BP electrocatalyst,stably delivering the overall water splitting for 50 h at 20 mA cm^(−2).Theoretical calculations have revealed that Ni–P covalent binding can regulate the electronic structure and optimize the reaction energy barrier to improve the catalytic activity effectively.This work confirms that Ni-functionalized BP is a suitable candidate for electrocatalytic overall water splitting,and provides effective strategies for constructing metal-lightweighted economic electrocatalysts. 展开更多
关键词 Black phosphorus Water electrolysis ELECTROCATALYST Electron redistribution Covalent functionalization
下载PDF
Asymmetric configuration activating lattice oxygen via weakening d-p orbital hybridization for efficient C/N separation in urea overall electrolysis
19
作者 Chongchong Liu Peifang Wang +3 位作者 Bin Hu Xiaoli Liu Rong Huang Gang Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期233-239,共7页
Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and comp... Urea oxidation reaction(UOR)is proposed as an exemplary half-reaction in renewable energy applications because of its low thermodynamical potential.However,challenges persist due to sluggish reaction kinetics and complex by-products separation.To this end,we introduce the lattice oxygen oxidation mechanism(LOM),propelling a novel UOR route using a modified CoFe layered double hydroxide(LDH)catalyst termed CFRO-7.Theoretical calculations and in-situ characterizations highlight the activated lattice oxygen(O_(L))within CFRO-7 as pivotal sites for UOR,optimizing the reaction pathway and accelerating the kinetics.For the urea overall electrolysis application,the LOM route only requires a low voltage of 1.54 V to offer a high current of 100 mA cm^(-2) for long-term utilization(>48 h).Importantly,the by-product NCO^(-)−is significantly suppressed,while the CO_(2)2/N_(2) separation is efficiently achieved.This work proposed a pioneering paradigm,invoking the LOM pathway in urea electrolysis to expedite reaction dynamics and enhance product selectivity. 展开更多
关键词 Lattice oxygen Urea oxidation reaction Overall electrolysis Products selectivity
下载PDF
Linear paired electrolysis of furfural to furoic acid at both anode and cathode in a multiple redox mediated system
20
作者 Xinxin Li Linchuan Cong +4 位作者 Haibo Lin Fangbing Liu Xiangxue Fu Hai-Chao Xu Nan Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期104-113,共10页
Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we r... Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects. 展开更多
关键词 Multiple redox mediated system Linear paired electrolysis FURFURAL Furoic acid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部