期刊文献+
共找到755篇文章
< 1 2 38 >
每页显示 20 50 100
Laser powder bed fusion of a Ni3Al-based intermetallic alloy with tailored microstructure and superior mechanical performance 被引量:1
1
作者 Mingyu Liu Jiang Wang +6 位作者 Tao Hu Songzhe Xu Sansan Shuai Weidong Xuan Shuo Yin Chaoyue Chen Zhongming Ren 《Advanced Powder Materials》 2024年第1期90-101,共12页
Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pr... Ni3Al-based alloys are excellent candidates for the structural materials used for turbine engines due to their excellent high-temperature properties.This study aims at laser powder bed fusion and post-hot isostatic pressing(HIP)treatment of Ni3Al-based IC^(-2)21 M alloy with a highγ0 volume fraction.The as-built samples exhibits unavoidable solidification cracking and ductility dip cracking,and the laser parameter optimization can reduce the crack density to 1.34 mm/mm^(2).Transmission electron microscope(TEM)analysis reveals ultra-fine nanoscaleγ0 phases in the as-built samples due to the high cooling rate during rapid solidification.After HIP treatment,a fully dense structure without cracking defects is achieved,which exhibits an equiaxed structure with grain size~120-180μm and irregularly shapedγ0 precipitates~1-3μm with a prominently high fraction of 86%.The room-temperature tensile test of as-built samples shows a high ultimate tensile strength(σUTS)of 1039.7 MPa and low fracture elongation of 6.4%.After HIP treatment,a significant improvement in ductility(15.7%)and a slight loss of strength(σUTS of 831.7 MPa)are obtained by eliminating the crack defects.Both the as-built and HIP samples exhibit retained highσUTS values of 589.8 MPa and 786.2 MPa,respectively,at 900C.The HIP samples exhibita slight decrease in ductility to~12.9%,indicating excellent high-temperature mechanical performance.Moreover,the abnormal increase in strength and decrease in ductility suggest the critical role of a highγ0 fraction in cracking formation.The intrinsic heat treatment during repeating thermal cycles can induce brittleness and trigger cracking initiation in the heat-affected zone with notable deteriorating ductility.The results indicate that the combination of LPBF and HIP can effectively reduce the crack density and enhance the mechanical properties of Ni_(3)Al-based alloy,making it a promising material for high-temperature applications. 展开更多
关键词 Laser powder bed fusion Ni3al-based alloy Hot isostatic pressing Solidification cracking High-temperature tensile performance
下载PDF
NaF assisted preparation and the improved corrosion resistance of high content ZnO doped plasma electrolytic oxidation coating on AZ31B alloy
2
作者 Chao Yang Jian Huang +7 位作者 Suihan Cui Ricky Fu Liyuan Sheng Daokui Xu Xiubo Tian Yufeng Zheng Paul K.Chu Zhongzhen Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3602-3615,共14页
In the present research,the NaF assisted plasma electrolytic oxidation(PEO)is designed to fabricate the high-content ZnO nanoparti-cles doped coating on AZ31B alloy.The microstructure,phase constituents and corrosion ... In the present research,the NaF assisted plasma electrolytic oxidation(PEO)is designed to fabricate the high-content ZnO nanoparti-cles doped coating on AZ31B alloy.The microstructure,phase constituents and corrosion behavior of the PEO coatings are investigated systematically.The results reveal that the introduction of NaF promotes the formation of MgF2 nanophases in the passivation layer on Mg alloy,decreasing the breakdown voltage and discharge voltage.As a result,the continuous arcing caused by high discharge voltage is alleviated.With the increasing of NaF content,the Zn content in the PEO coating is enhanced and the pore size in the coating is decreased correspondingly.Due to the high-content ZnO doping,the PEO coating protected AZ31B alloy demonstrates the better corrosion resistance.Compared with the bare AZ31B alloy,the high-content ZnO doped PEO coated sample shows an increased corrosion potential from-1.465 V to-1.008 V,a decreased corrosion current density from 3.043×10^(-5) A·cm^(-2) to 3.960×10^(-8) A·cm^(-2) and an increased charge transfer resistance from 1.213×10^(2) ohm·cm^(2) to 2.598×10^(5) ohm·cm^(2).Besides,the high-content ZnO doped PEO coated sample also has the excellent corrosion resistance in salt solution,exhibiting no obvious corrosion after more than 2000 h neutral salt spraying and 28 days’immersion testing.The improved corrosion resistance can be ascribed to the relative uniform distribution of ZnO in PEO coating which can transform to Zn(OH)2 and form a continuous protective layer along the corrosion interface. 展开更多
关键词 AZ31B alloy Plasma electrolytic oxidation(PEO) ZnO doping NAF Corrosion resistant
下载PDF
Effects of current density on microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy 被引量:10
3
作者 项南 宋仁国 +3 位作者 庄俊杰 宋若希 陆筱雅 苏旭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期806-813,共8页
Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o... Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings. 展开更多
关键词 6063 aluminum alloy ceramic coating plasma electrolytic oxidation(PEO) current density MICROSTRUCTURE mechanical property
下载PDF
Plasma electrolytic oxidation of zircaloy-4 alloy with DC regime and properties of coatings 被引量:3
4
作者 程英亮 伍帆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1638-1646,共9页
The plasma electrolytic oxidation(PEO) coatings on zircaloy?4 alloy were prepared in silicate,phosphate and pyrophosphate electrolyte systems or their combination by DC current regime.The proper processing paramete... The plasma electrolytic oxidation(PEO) coatings on zircaloy?4 alloy were prepared in silicate,phosphate and pyrophosphate electrolyte systems or their combination by DC current regime.The proper processing parameters were determined and the coatings were evaluated by electrochemistry technique,micro-hardness,SEM and XRD.The results show that the coating prepared in pure silicate system is uneven and after the addition of phosphate solution,the homogeneity of the coating is still poor.The coating prepared in pure pyrophosphate electrolyte system is homogeneous,but its hardness value is low.After the addition of silicate into the pyrophosphate electrolytic system,both the uniformity and hardness of the coating are improved.The XRD results show that the phase compositions are m-ZrO2 and t-ZrO2,the addition of silicate is beneficial to the formation of t-ZrO2.The results of polarization curves show that the coatings prepared in pyrophosphate and the mixture of pyrophosphate and silicate have better corrosion resistance. 展开更多
关键词 zirconium alloy plasma electrolytic oxidation corrosion resistance micro-hardness
下载PDF
Wear and corrosion resistant coatings on surface of cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes 被引量:12
5
作者 谢焕钧 程英亮 +2 位作者 李绍先 曹金晖 曹力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期336-351,共16页
Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and... Plasma electrolytic oxidation of a cast A356 aluminum alloy was carried out in aluminate electrolytes to develop wear and corrosion resistant coatings. Different concentrations of 2, 16 and 24 g/L NaAlO2 solutions and a silicate electrolyte (for comparison) were employed for the investigation. Wear performance and corrosion resistance of the coatings were evaluated by WC (tungsten carbide) ball-on-flat dry sliding tests and electrochemical methods, respectively. The results show that the coating formed for a short duration of 480 s in 24 g/L NaAlO2 solution generated the best protection. The coating sustained 30 N load for sliding time of 1800 s, showing very low wear rate of -4.5×10^-7 mm3/(N· m). A low corrosion current density of -8.81×10^-9 A/cm2 was also recorded. Despite low α-Al2O3 content of the coating, the compact and nearly single layer nature of the coating guaranteed the excellent performances. 展开更多
关键词 A356 aluminium alloy sodium aluminate plasma electrolytic oxidation WEAR corrosion
下载PDF
Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys:Comparison of coatings formation mechanism 被引量:16
6
作者 A.G.Rakoch E.P.Monakhova +4 位作者 Z.V.Khabibullina M.Serdechnova C.Blawert M.L.Zheludkevich A.A.Gladkova 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期587-600,共14页
The growth kinetics of PEO coatings on AZ31 and AZ91 magnesium alloys were studied and correlated with their structure,compositions(phase and elemental)and corrosion resistance.It was established that the coatings hav... The growth kinetics of PEO coatings on AZ31 and AZ91 magnesium alloys were studied and correlated with their structure,compositions(phase and elemental)and corrosion resistance.It was established that the coatings have a two-(outer and anodic)or three-layer structure(outer,inner and anodic)depending on the treatment time.Briefly,at short treatment time only an anodic layer and outer layer exists.Growth of the outer PEO layer takes place due to the micro discharges,which occur in vertical pores and voids with spherical cross-section.If the time is increasing,and electrolyte inside of the pores is heating-up,etching of the Mg substrate and oxide film becomes more dominant and horizontal pores in the interface between coating and metal are formed.In the pores new anodic layer will form and at this time the formation of the third inner layer starts.The growth of the inner layer happens via the anodic film as a result of micro discharge ignition in the horizontal pores,accompanied by formation of plasma in numerous micro-voids of this layer.The coatings formed on AZ91 alloy are denser,than those on AZ31,which is related to the difference in the rates of inner layer growth and dissolving of oxides which are located at the bottom of the horizontal pores.Because of the lower Al content,the AZ31 substrate itself and the also the oxide films are less stable and tend to dissolve at a higher rate compared to AZ91.Thus,it was demonstrated that a good corrosion resistance of the coatings was only obtained on AZ91 and if the average thickness of the coating is around 50μm,correlating with the formation of a sufficiently dense inner laye-Knowing this mechanism,a new two-step treatment was suggested,combining the standard PEO treatment with a subsequent PEO process in an electrolyte supporting the inner film formation.The concept was successfully applied and a further improved corrosion resistance was obtained compared to the single stage PEO process.This improvement of corrosion resistance was related to the better sealing of porosity and formation of a denser inner layer. 展开更多
关键词 Plasma electrolytic oxidation Magnesium alloys Coating formation Coating growth Corrosion resistance.
下载PDF
Corrosion and wear resistance of AZ31 Mg alloy treated by duplex process of magnetron sputtering and plasma electrolytic oxidation 被引量:12
7
作者 Bing-jian WEI Yu-lin CHENG +2 位作者 Yuan-yuan LIU Zhun-da ZHU Ying-liang CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2287-2306,共20页
In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation... In order to improve the wear and corrosion resistance of AZ31 magnesium alloy,a magnetron-sputtered Al layer with a thickness of 11μm was firstly applied on the alloy,and then treated by plasma electrolytic oxidation(PEO)in an aluminate and silicate electrolytes,respectively.The performance of PEO coatings was investigated by dry sliding wear and electrochemical corrosion tests.The aluminate coating exhibits excellent wear resistance under both 10 and 20 N loads.The silicate coating only shows low wear rate under 10 N,but it was destroyed under 20 N.Corrosion tests show that the Al layer after magnetron sputtering treatment alone cannot afford good protection to the Mg substrate.However,the duplex layer of PEO/Al can significantly improve the corrosion resistance of AZ31 alloy.Electrochemical tests show that the aluminate and silicate coatings have corrosion current densities of-1.6×10^(-6) and-1.1×10^(-6) A/cm^(2),respectively,which are two orders lower than that of the un-coated AZ31 alloy.However,immersion tests and electrochemical impedance spectroscopy(EIS)show that the aluminate coating exhibits better long-term corrosion protection than silicate coating. 展开更多
关键词 AZ31 magnesium alloy magnetron sputtering plasma electrolytic oxidation dry sliding wear CORROSION
下载PDF
Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy 被引量:7
8
作者 Siyuan Jin Xiaochun Ma +6 位作者 Ruizhi Wu Tingqu Li Jiaxiu Wang Boris L Krit Legan Hou Jinghuai Zhang Guixiang Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1453-1463,共11页
Carbonate was added to the silicate system electrolyte to improve the corrosion resistance of the plasma electrolytic oxidation coating on Mg-9Li-3Al(wt%,LA93)alloy.The influences of carbonate on the morphology,struct... Carbonate was added to the silicate system electrolyte to improve the corrosion resistance of the plasma electrolytic oxidation coating on Mg-9Li-3Al(wt%,LA93)alloy.The influences of carbonate on the morphology,structure,and phase composition of the coating were investigated by scanning electron microscopy,energy dispersive spectrometry,X-ray diffraction,and X-ray photoelectron spectroscopy.The corrosion resistance of the coating was evaluated by electrochemical experiment,hydrogen evolution,and immersion test.The results showed that the addition of carbonate resulted in a denser coating with increased hardness,and the corrosion-resistant Li_(2)CO_(3) phase was formed.Electrochemical experiments showed that compared with the coating without carbonate,the corrosion potential of the carbonate coating positively shifted(24 mV),and the corrosion current density was reduced by approximately an order of magnitude.The coating with carbonate addition possessed a high corrosion resistance and long-term protection capability. 展开更多
关键词 Mg-Li alloy plasma electrolytic oxidation corrosion resistance CARBONATE
下载PDF
Wear and corrosion behavior of clay containing coating on AM 50 magnesium alloy produced by aluminate-based plasma electrolytic oxidation 被引量:6
9
作者 Farideh DAVOODI Masoud ATAPOUR +1 位作者 Carsten BLAWERT Mikhail ZHELUDKEVICH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第12期3719-3738,共20页
This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based ele... This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based electrolyte with and without the presence of 5 g/L clay particles.The structure and composition of the coatings were evaluated using SEM,EDS and XRD.The wear investigations were conducted using a ball-on-disk tribometer at 2,5 and 10 N loads.The corrosion behavior of the coatings was examined using polarization and EIS tests in 0.5 wt.%NaCl.The results revealed that the addition of clay particles deteriorated the wear resistance of the coatings under the loads of 5 and 10 N.The SEM examinations of the worn surfaces indicated that a combination of adhesive and abrasive wear mechanisms was activated for the coating with clay particles.The poor wear performance of the clay-incorporated coating was related to its lower adhesion strength and higher roughness.The potentiodynamic polarization examinations revealed that the addition of clay particles slightly decreased the corrosion rate of the coatings.Corrosion resistance of the clay-containing coating was attributed to its compactness,as indicated by the results of EIS tests. 展开更多
关键词 WEAR corrosion clay particles plasma electrolytic oxidation Mg alloys
下载PDF
Improving the wear resistance of plasma electrolytic oxidation(PEO)coatings applied on Mg and its alloys under the addition of nano-and micro-sized additives into the electrolytes:A review 被引量:9
10
作者 Maryam Molaei Kazem Babaei Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1167-1189,共23页
As an efficient surface modification approach,the plasma electrolytic oxidation(PEO)technique can boost the capability of wear protection in Mg and its alloys by applying a hard and thick ceramic coating.In this proce... As an efficient surface modification approach,the plasma electrolytic oxidation(PEO)technique can boost the capability of wear protection in Mg and its alloys by applying a hard and thick ceramic coating.In this procedure,more efficient protection can be acquired via adding additives(in the form of particle,powder,sheet,etc.)into solutions and producing composite coatings.These additives result in more efficient protection against wear via getting stuck in the cracks and pores of coatings and rising the thickness,hardness,and diminishing the porosity size and content.The efficiency of each additive can be changed owing to its intrinsic properties like melting point,size,participation type(reactive,partly reactive,or inert)and potential of zeta.In this review,the effects of distinct additives in nano-and micro-scale size on wear behavior of PEO coatings on Mg and its alloys is going to be reviewed. 展开更多
关键词 Plasma electrolytic oxidation(PEO) Mg alloys Wear behavior Nano-sized additives Micro-sized additives
下载PDF
Investigation of mutual effects among additives in electrolyte for plasma electrolytic oxidation on magnesium alloys 被引量:10
11
作者 Lingyun An Ying Ma +2 位作者 Le Sun Zhanying Wang Sheng Wang 《Journal of Magnesium and Alloys》 SCIE 2020年第2期523-536,共14页
Plasma electrolytic oxidation(PEO)coatings were prepared on AZ91D magnesium alloys in alkaline silicate-based electrolyte with and without additives.The mutual effects among additives including TiC particles,dispersan... Plasma electrolytic oxidation(PEO)coatings were prepared on AZ91D magnesium alloys in alkaline silicate-based electrolyte with and without additives.The mutual effects among additives including TiC particles,dispersant polyethylene glycol 6000(PEG6000)and anionic surfactant sodium dodecyl sulfate(SDS)were studied based on orthogonal experiment.The content and distribution of TiC deposited in the coatings were measured by EPMA and EDS.The thicknesses,phase compositions,microstructures and corrosion resistances of the codlings were cAarnined by using TT260 eddy current tuickncss gage,XRD,SEM and clcctrochcniical test,respectively.The results show that the experiment design of this study is the key to study the mutual effects among these additives.Each additive and their interactions all remarkably influence TiC content and corrosion resistance of the coatings.Smaller size TiC is much easier to migrate towards the anode,and the interaction between PEG6000 and SDS both effectively prevents its agglomeration and increases the number of its negative surface charges,which further increase the migration rate and the deposited uniformity of TiC and make TiC have more opportunity to deposit in the discharge channel.Thus,when smaller size TiC,PEG6000 and SDS are all added into the electrolyte,they could improve the anti-corrosion property of the coating to the largest extent attributed to higher TiC content and the densest microstructure of the coating. 展开更多
关键词 Magnesium alloys Plasma electrolytic oxidation ADDITIVES Mutual effects Orthogonal experiment Corrosion resistance
下载PDF
Effects of Yttrium Ion on Formation Mechanism of ZrO_2-Y_2O_3 Ceramic Coatings Formed by Plasma Electrolytic Oxidation on Al-12Si Alloy 被引量:3
12
作者 王萍 LI Jianping +2 位作者 GUO Yongchun YANG Zhong WANG Jianli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期1044-1048,共5页
ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that... ZrO2-Y2O3 ceramic coating was produced by plasma electrolytic oxidation (PEO) on ZAlSil2Cu3Ni2 alloy. The microstructure and phase composition of the coating were investigated by SEM and XRD.: The results show that adding an appropriate amount of yttrium ion can improve the growing rate of ceramic coating at different oxidation stages and decrease arc voltage. The thickness of ZrO2-Y2O3 coating is 16 μn thicker than that of ZrO2 coating and the maximum oxidation rate improves by 0.6 μm/min. In addition, the arc voltage decreases from 227 to 172 V. It can be seen that the rate of oxidation firstly increases to some extent and then decreases with the content of yttrium ion increasing. The growth rate reaches the maximum while the content of yttrium ion is 0.05 g-L-1The maximum thickness is 90 μm.Compared to ZrO2 coating, the micropores of ZrO2-Y2O3 coating are less and the ceramic layer is repeatedly deposited by ZrO2 and Y2O3 ceramic particles. Meanwhile, the binding force between coating and substrate is better and the coating is uniform and compact. The ceramic layer is mainly composed of c-Y0.15Zr0.85O1.93□0.07, m-ZrO2, α-Al2O3, ,γ-Al2O3 and Y2O3. It is indicated that ZrO2 has beert fully stabilized by yttrium ion through the formation of solid solution. 展开更多
关键词 Al-12Si alloys yttrium ion plasma electrolytic oxidation ZrO2-Y2O3 ceramic coating
下载PDF
Preparation of micro/nano-structured ceramic coatings on Ti6Al4V alloy by plasma electrolytic oxidation process 被引量:9
13
作者 Da-jun ZHAI Ke-qin FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2546-2555,共10页
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce... In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF. 展开更多
关键词 plasma electrolytic oxidation Ti6Al4V alloy micro/nano structure NAF surface modification
下载PDF
Surface characterization and corrosion behavior of calcium phosphate(Ca-P)base composite layer on Mg and its alloys using plasma electrolytic oxidation(PEO):A review 被引量:9
14
作者 Razieh Chaharmahali Arash Fattah-alhosseini Kazem Babaei 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期21-40,共20页
Magnesium has been known as an appropriate biological material on account of its good biocompatibility and biodegradability properties in addition to advantageous mechanical properties.Mg and its alloys are of poor co... Magnesium has been known as an appropriate biological material on account of its good biocompatibility and biodegradability properties in addition to advantageous mechanical properties.Mg and its alloys are of poor corrosion resistance.Its high corrosion rate leads to its quick decomposition in the corrosive ambiance and as a result weakening its mechanical properties and before it is repaired,it will vanish.The corrosion and degradation rate must be controlled in the body to advance the usage of Mg and its alloys as implants.Different techniques have been utilized to boost biological properties.Plasma electrolytic oxidation(PEO)can provide porous and biocompatible coatings for implants among various techniques.Biodegradable implants are generally supposed to show enough corrosion resistance and mechanical integrity in the body environment.Much research has been carried out in order to produce PEO coatings containing calcium phosphate compounds.Calcium phosphates are really similar to bone mineral composition and present great biocompatibility.The present study deals with the usage of calcium phosphates as biocompatible coatings applied on Mg and its alloys to study the properties and control the corrosion rate. 展开更多
关键词 Mg alloys Calcium phosphate(Ca-P) Plasma electrolytic oxidation(PEO) Surface characterization Corrosion behavior
下载PDF
TEM Specimen Preparation for Al-based Amorphous Alloys 被引量:3
15
作者 Hongwang YANG Xinchun CHANG Wanliang HOU Jianqiang WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期655-658,共4页
Transmission electron microscopy (TEM) is usually used to identify the amorphicity. However, some artifacts may be introduced due to improper TEM foil preparation. In this paper, three Al-rich metallic glasses with ... Transmission electron microscopy (TEM) is usually used to identify the amorphicity. However, some artifacts may be introduced due to improper TEM foil preparation. In this paper, three Al-rich metallic glasses with and without a glass transition were selected for characterizing the effect of the electropolishing condition on the as-quenched structure during TEM specimen preparation. It is shown that the occurrence of the modulated bright-dark structure under TEM observation is closely sensitive to the electropolishing condition, which suggests us being careful about the possible artifacts induced by specimen preparation when examining amorphous alloys under TEM. 展开更多
关键词 al-based amorphous alloy Transmission electron microscopy ELECTROPOLISHING
下载PDF
Effect of NaOH on plasma electrolytic oxidation of A356 aluminium alloy in moderately concentrated aluminate electrolyte 被引量:5
16
作者 Yu-lin CHENG Huan-jun XIE +1 位作者 Jin-hui CAO Ying-liang CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第12期3677-3690,共14页
Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by in... Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH.However,corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration.Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte.The results show that the optimal NaOH concentration is 5 g/L,which improves the stability of storage electrolyte to about 35 days,and leads to dense coatings with high wear performance(wear rate:4.1×10^(−7) mm^(3)·N^(−1)·m^(−1)). 展开更多
关键词 plasma electrolytic oxidation wear resistance sodium aluminate sodium hydroxide A356 alloy
下载PDF
A review of Al-based material dopants for high-performance solid state lithium metal batteries
17
作者 Ying Tian Weicui Liu +6 位作者 Tianwei Liu Xiaofan Feng Wenwen Duan Wen Yu Hongze Li Nanping Deng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期244-261,共18页
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi... As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs. 展开更多
关键词 al-based material dopants Solid state lithium metal batteries Solid-state electrolytes Action mechanisms and structure designs Optimization strategies
下载PDF
Lithiophilic Li-Si alloy-solid electrolyte interface enabled by high-concentration dual salt-reinforced quasi-solid-state electrolyte
18
作者 Yuanxing Zhang Ling Zhang +7 位作者 Zhiguang Zhao Yuxiang Zhang Jingwen Cui Chengcai Liu Daobin Mu Yuefeng Su Borong Wu Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期216-230,I0005,共16页
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ... Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles. 展开更多
关键词 Prelithiation Li-Si alloy anode Solid-state electrolyte SEI layer
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
19
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes Corrosion resistance AM50 magnesium alloy
下载PDF
MICROSTRUCTURE AND COMPOSITION OF THE ELECTROLYTIC ETCHED PATTERN GRAINING SURFACE OF Al-Mg-Si ALLOY 被引量:1
20
作者 M. Z. An, L. C. Zhao and Z. M. Tu Harbin Institute of Technology, Harbin 150001, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期995-1001,共7页
After electrolytically etched pattern graining surface of aluminum alloy, it is shows that there are porous oxide film containing α Al 2O 3 and α Al 2O 3 by means of SEM XRD and XPS analysis. In the ditches, a... After electrolytically etched pattern graining surface of aluminum alloy, it is shows that there are porous oxide film containing α Al 2O 3 and α Al 2O 3 by means of SEM XRD and XPS analysis. In the ditches, anodic oxidation makes pore density and diameter larger than other areas, and causes more coloring metal depositing and mutual cross linking. The electrolytically etched pattern surface shows relative deeper color on the ditches and lighter color on other areas, so it can be used for decoration. Electrolytic coloring metal exists in forms of Ag colloid and Ag 2O. Both anodic oxidation and electrolytic coloring affect the surface microstructure of aluminum alloy. 展开更多
关键词 aluminum alloy electrolytic etching MICROSTRUCTURE COMPOSITION
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部