Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continue...Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continues even when the electrolyte flow is stopped,leading to great Al waste.To tackle these issues,an innovative cotton-based aluminum-air battery is developed in this study.Instead of flowing alkaline solution,cotton substrate pre-deposited with solid alkaline is used,together with a small water reservoir to continuously wet the cotton and dissolve the alkaline in-situ.In this manner,the battery can be mechanically recharged by replacing the cotton substrate and refilling the water reservoir,while the thick aluminum anode can be reused for tens of times until complete consumption.The cotton substrate shows excellent ability for the storage and transportation of alkaline electrolyte,leading to a high peak power density of 73 mW cm^(-2) and a high specific energy of 930 mW h g^(-1).Moreover,the battery discharge capacity is found to be linear to the loading of pre-deposited alkaline,so that it can be precisely controlled according to the mission profile to avoid Al waste.Finally,a two-cell battery pack with common water reservoir is developed,which can provide a voltage of 2.7 V and a power output of 223.8 mW.With further scaling-up and stacking,this cotton-based Al-air battery system with low cost and high energy density is very promising for recharging miniwatt electronics in the outdoor environment.展开更多
In electrolytic capacitorless permanent magnet synchronous motor(PMSM) drives, the DC-link voltage will fluctuate in a wide range due to the use of slim film capacitor. When the flux-weakening current is lower than-ψ...In electrolytic capacitorless permanent magnet synchronous motor(PMSM) drives, the DC-link voltage will fluctuate in a wide range due to the use of slim film capacitor. When the flux-weakening current is lower than-ψf/Ld during the high speed operation, the flux-weakening control loop will transform to a positive feedback mode, which means the reduction of flux-weakening current will lead to the acceleration of the voltage saturation, thus the whole system will be unstable. In order to solve this issue, this paper proposes a novel flux-weakening method for electrolytic capacitorless motor drives to maintain a negative feedback characteristic of the control loop during high speed operation. Based on the analysis of the instability mechanism in flux-weakening region, a quadrature voltage constrain mechanism is constructed to stabilize the system.Meanwhile, the parameters of the controller are theoretically designed for easier industrial application. The proposed algorithm is implemented on a 1.5 kW electrolytic capacitorless PMSM drive to verify the effectiveness of the flux-weakening performance.展开更多
The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrati...The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.展开更多
Traditional thermal power units are continuously replaced by renewable energies,of which fluctuations and intermittence impose pressure on the frequency stability of the power system.Electrolytic aluminum load(EAL)acc...Traditional thermal power units are continuously replaced by renewable energies,of which fluctuations and intermittence impose pressure on the frequency stability of the power system.Electrolytic aluminum load(EAL)accounts for large amount of the local electric loads in some areas.The participation of EAL in local frequency control has huge application prospects.However,the controller design of EAL is difficult due to the measurement noise of the system frequency and the nonlinear dynamics of the EAL’s electric power consumption.Focusing on this problem,this paper proposes a control strategy for EAL to participate in the frequency control.For the controller design of the EAL system,the system frequency response model is established and the EAL transfer function model is developed based on the equivalent circuit of EAL.For the problem of load-side frequency measurement error,the frequency estimation method based on Kalman-filtering is designed.To improve the performance of EAL in the frequency control,a fuzzy EAL controller is designed.The testing examples show that the designed Kalman-filter has good performance in de-noising the measured frequency,and the designed fuzzy controller has better performance in stabilizing system frequency than traditional methods.展开更多
The details of ternary fluoride crystallization in the system NaF-CaF2-AlF3 have been specified. The phases NaCaAlF6, Na2Ca3Al2F14 and NaAlF4 have been obtained by high-temperature synthesis. Their thermal transformat...The details of ternary fluoride crystallization in the system NaF-CaF2-AlF3 have been specified. The phases NaCaAlF6, Na2Ca3Al2F14 and NaAlF4 have been obtained by high-temperature synthesis. Their thermal transformations have been studied using high-temperature X-ray diffraction. The occurring transformations can be considered in a quasibinary system CaF2-NaAlF4, where at T = 745°C - 750°C invariant equilibrium is established with the phases CaF2-NaCaAlF6-Na2Ca3Al2F14-(NaAlF4). The compounds NaCaAlF6 and Na2Ca3Al2F14 are stable in different temperature ranges. The phase NaCaAlF6 was fixed by rapid quenching from the melt. It decomposes at heating before 640°C yielding Na2Ca3Al2F14 and NaAlF4. Direct and inverse transformations between NaCaAlF6 and Na2Ca3Al2F14 occur in the bulk samples of the electrolyte. A thermal treatment procedure was proposed for the solid electrolyte sample to get a sample corresponding to the composition of the melt and providing high phase crystallinity for the purposes of quantitative X-ray phase diffraction analysis.展开更多
Sodium-ion batteries(SIBs)with low cost and high safety are considered as an electrochemical energy storage technology suitable for large-scale energy storage.Hard carbon,which is inexpensive and has both high capacit...Sodium-ion batteries(SIBs)with low cost and high safety are considered as an electrochemical energy storage technology suitable for large-scale energy storage.Hard carbon,which is inexpensive and has both high capacity and low sodium storage potential,is regarded as the most promising anode for commercial SIBs.However,the commercialization of hard carbon still faces technical issues of low initial Coulombic efficiency,poor rate performance,and insufficient cycling stability,due to the intrinsically irregular microstructure of hard carbon.To address these challenges,the rational design of the hard carbon microstructure is crucial for achieving high-performance SIBs,via gaining an in-depth understanding of its structure-performance correlations.In this context,our review firstly describes the sodium storage mechanism from the perspective of the hard carbon microstructure's formation.We then summarize the state-of-art development of hard carbon,providing a critical overview of emergence of hard carbon in terms of precursor selection,microstructure design,and electrolyte regulation to optimize strategies for addressing practical problems.Finally,we highlight directions for the future development of hard carbon to achieve the commercialization of high-performance SIBs.We believe this review will serve as basic guidance for the rational design of hard carbon and stimulate more exciting research into other types of energy storage devices.展开更多
基金the SZSTI of Shenzhen Municipal Government (JCYJ20170818141758464)the CRCG grant of the University of Hong Kong (201910160008)for providing funding support to the project.
文摘Conventional Al-air battery has many disadvantages for miniwatt applications,such as the complex water management,bulky electrolyte storage and potential leakage hazard.Moreover,the self-corrosion of Al anode continues even when the electrolyte flow is stopped,leading to great Al waste.To tackle these issues,an innovative cotton-based aluminum-air battery is developed in this study.Instead of flowing alkaline solution,cotton substrate pre-deposited with solid alkaline is used,together with a small water reservoir to continuously wet the cotton and dissolve the alkaline in-situ.In this manner,the battery can be mechanically recharged by replacing the cotton substrate and refilling the water reservoir,while the thick aluminum anode can be reused for tens of times until complete consumption.The cotton substrate shows excellent ability for the storage and transportation of alkaline electrolyte,leading to a high peak power density of 73 mW cm^(-2) and a high specific energy of 930 mW h g^(-1).Moreover,the battery discharge capacity is found to be linear to the loading of pre-deposited alkaline,so that it can be precisely controlled according to the mission profile to avoid Al waste.Finally,a two-cell battery pack with common water reservoir is developed,which can provide a voltage of 2.7 V and a power output of 223.8 mW.With further scaling-up and stacking,this cotton-based Al-air battery system with low cost and high energy density is very promising for recharging miniwatt electronics in the outdoor environment.
基金supported in part by the Research Fund for the National Natural Science Foundation of China under Grant 52125701, 52007039, 51877054in part by the Key areas R&D Program of Guangdong Province China under Grant 2021B0101310001。
文摘In electrolytic capacitorless permanent magnet synchronous motor(PMSM) drives, the DC-link voltage will fluctuate in a wide range due to the use of slim film capacitor. When the flux-weakening current is lower than-ψf/Ld during the high speed operation, the flux-weakening control loop will transform to a positive feedback mode, which means the reduction of flux-weakening current will lead to the acceleration of the voltage saturation, thus the whole system will be unstable. In order to solve this issue, this paper proposes a novel flux-weakening method for electrolytic capacitorless motor drives to maintain a negative feedback characteristic of the control loop during high speed operation. Based on the analysis of the instability mechanism in flux-weakening region, a quadrature voltage constrain mechanism is constructed to stabilize the system.Meanwhile, the parameters of the controller are theoretically designed for easier industrial application. The proposed algorithm is implemented on a 1.5 kW electrolytic capacitorless PMSM drive to verify the effectiveness of the flux-weakening performance.
文摘The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.
基金funded by Science and Technology Project of State Grid Corporation of China:Research on the Construction and Evaluation Technology of the Data-Driven-based Adjustable Resource Pool of Typical Industrial Enterprises,Grant No.1400-202016386A-0-0-00.
文摘Traditional thermal power units are continuously replaced by renewable energies,of which fluctuations and intermittence impose pressure on the frequency stability of the power system.Electrolytic aluminum load(EAL)accounts for large amount of the local electric loads in some areas.The participation of EAL in local frequency control has huge application prospects.However,the controller design of EAL is difficult due to the measurement noise of the system frequency and the nonlinear dynamics of the EAL’s electric power consumption.Focusing on this problem,this paper proposes a control strategy for EAL to participate in the frequency control.For the controller design of the EAL system,the system frequency response model is established and the EAL transfer function model is developed based on the equivalent circuit of EAL.For the problem of load-side frequency measurement error,the frequency estimation method based on Kalman-filtering is designed.To improve the performance of EAL in the frequency control,a fuzzy EAL controller is designed.The testing examples show that the designed Kalman-filter has good performance in de-noising the measured frequency,and the designed fuzzy controller has better performance in stabilizing system frequency than traditional methods.
文摘The details of ternary fluoride crystallization in the system NaF-CaF2-AlF3 have been specified. The phases NaCaAlF6, Na2Ca3Al2F14 and NaAlF4 have been obtained by high-temperature synthesis. Their thermal transformations have been studied using high-temperature X-ray diffraction. The occurring transformations can be considered in a quasibinary system CaF2-NaAlF4, where at T = 745°C - 750°C invariant equilibrium is established with the phases CaF2-NaCaAlF6-Na2Ca3Al2F14-(NaAlF4). The compounds NaCaAlF6 and Na2Ca3Al2F14 are stable in different temperature ranges. The phase NaCaAlF6 was fixed by rapid quenching from the melt. It decomposes at heating before 640°C yielding Na2Ca3Al2F14 and NaAlF4. Direct and inverse transformations between NaCaAlF6 and Na2Ca3Al2F14 occur in the bulk samples of the electrolyte. A thermal treatment procedure was proposed for the solid electrolyte sample to get a sample corresponding to the composition of the melt and providing high phase crystallinity for the purposes of quantitative X-ray phase diffraction analysis.
基金The authors acknowledge financial supports from the National Key Research and Development Program(2019YFE0111200)the Macao Science and Technology Development Fund,Macao SAR(File No.0035-2019-AMJ).
文摘Sodium-ion batteries(SIBs)with low cost and high safety are considered as an electrochemical energy storage technology suitable for large-scale energy storage.Hard carbon,which is inexpensive and has both high capacity and low sodium storage potential,is regarded as the most promising anode for commercial SIBs.However,the commercialization of hard carbon still faces technical issues of low initial Coulombic efficiency,poor rate performance,and insufficient cycling stability,due to the intrinsically irregular microstructure of hard carbon.To address these challenges,the rational design of the hard carbon microstructure is crucial for achieving high-performance SIBs,via gaining an in-depth understanding of its structure-performance correlations.In this context,our review firstly describes the sodium storage mechanism from the perspective of the hard carbon microstructure's formation.We then summarize the state-of-art development of hard carbon,providing a critical overview of emergence of hard carbon in terms of precursor selection,microstructure design,and electrolyte regulation to optimize strategies for addressing practical problems.Finally,we highlight directions for the future development of hard carbon to achieve the commercialization of high-performance SIBs.We believe this review will serve as basic guidance for the rational design of hard carbon and stimulate more exciting research into other types of energy storage devices.