The wear resistance of six kinds of the electrolytic low-titanium eutectic AI-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the el...The wear resistance of six kinds of the electrolytic low-titanium eutectic AI-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic AI-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, AI-50%Cu and AI-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic AI-Si piston alloys with 0.08wt.%-0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic AI-Si piston alloys under lubricating condition is abrasive wear.展开更多
The effects of superheating temperature on the grain refining efficiency of Ti existing in electrolytic low-titanium aluminum(ELTA)without and with the Al-4B addition and the Al-5Ti-1B master alloy in pure Al were com...The effects of superheating temperature on the grain refining efficiency of Ti existing in electrolytic low-titanium aluminum(ELTA)without and with the Al-4B addition and the Al-5Ti-1B master alloy in pure Al were comparatively investigated. The results show that the Ti existing in ELTA without Al-4B addition exhibits a certain grain refining efficiency when the melt superheating temperature is lower,but the efficiency decreases rapidly when the superheating temperature is higher.The grain refining efficiency of the Al-5Ti-1B master alloy is better than that of the Ti existing in ELTA without Al-4B addition at any superheating temperature,but it also decreases obviously with the increase of the superheating temperature.One important reason is that the TiB2 particles coming from the Al-5Ti-1B master alloy can settle down at the bottom of the Al melt easily when the superheating temperature is increased,thus decrease the number of the potent heterogeneous nuclei retained in the Al melt.If the Al-4B master alloy is added to the ELTA melt,the grain refining efficiency of the Ti existing in ELTA can be improved significantly, and does not decrease with the increase of the superheating temperature.This perhaps provides us a possible method to suppress the effect of the superheated melt on the microstructures of aluminum..展开更多
基金the Natural Science Fund of Education Department of Henan Province (200510459077)
文摘The wear resistance of six kinds of the electrolytic low-titanium eutectic AI-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic AI-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, AI-50%Cu and AI-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic AI-Si piston alloys with 0.08wt.%-0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic AI-Si piston alloys under lubricating condition is abrasive wear.
文摘The effects of superheating temperature on the grain refining efficiency of Ti existing in electrolytic low-titanium aluminum(ELTA)without and with the Al-4B addition and the Al-5Ti-1B master alloy in pure Al were comparatively investigated. The results show that the Ti existing in ELTA without Al-4B addition exhibits a certain grain refining efficiency when the melt superheating temperature is lower,but the efficiency decreases rapidly when the superheating temperature is higher.The grain refining efficiency of the Al-5Ti-1B master alloy is better than that of the Ti existing in ELTA without Al-4B addition at any superheating temperature,but it also decreases obviously with the increase of the superheating temperature.One important reason is that the TiB2 particles coming from the Al-5Ti-1B master alloy can settle down at the bottom of the Al melt easily when the superheating temperature is increased,thus decrease the number of the potent heterogeneous nuclei retained in the Al melt.If the Al-4B master alloy is added to the ELTA melt,the grain refining efficiency of the Ti existing in ELTA can be improved significantly, and does not decrease with the increase of the superheating temperature.This perhaps provides us a possible method to suppress the effect of the superheated melt on the microstructures of aluminum..