期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Influence of iron powder content on the electromagnetic and mechanical performance of soft magnetic geopolymer composite
1
作者 Tao Ma Gonghui Gu +1 位作者 Feng Chen Ning Wang 《Journal of Road Engineering》 2023年第3期288-299,共12页
In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.... In the induction heating of airport pavement to remove snow and ice,soft magnetic geopolymer composite(SMGC)can be used to gather the dissipated electromagnetic energy,thus enhancing the energy utilization efficiency.The aim of this work is to analyze the influence mechanism of iron powder content on the electromagnetic and mechanical performance of SMGC,so as to provide theoretical guidance for the design of soft magnetic layer within airport pavement structure.The results show that the increase of iron powder content reduces the resistance and magnetoresistance of SMGC by decreasing the content of non-magnetic phases between iron powder.However,the reduction of iron powder spacing also provides a shorter transmission path for the inter-particle eddy currents in the SMGC specimen,which enhances the exchange coupling between iron powder,thus increasing the electromagnetic loss.Therefore,the compatibility between magnetic permeability and electromagnetic loss should be considered comprehensively in the mix design of SMGC.In addition,although iron powder can enhance the mechanical properties of SMGC by improving the density of geopolymer matrix,the excessive amount of iron powder can lead to a weak interfacial transition zone between geopolymer matrix and iron powder.According to the induction heating results,optimized SMGC can improve the energy transfer efficiency of induction heating by 24.03%. 展开更多
关键词 Soft magnetic geopolymer Mechanical performance electromagnetic performance Induction heating Energy conversion efficiency
下载PDF
Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance
2
作者 Qiugang Liao Hao Liu +5 位作者 Ziqiang Chen Yinggan Zhang Rui Xiong Zhou Cui Cuilian Wen Baisheng Sa 《Frontiers of physics》 SCIE CSCD 2023年第3期155-166,共12页
With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electroni... With the development of modern electronics,especially the next generation of wearable electromagnetic interference(EMI)shielding materials requires flexibility,ultrathin,lightweight and robustness to protect electronic devices from radiation pollution.In this work,the flexible and ultrathin dopamine modified MXene@cellulose nanofiber(DM@CNF)composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach.The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film.By adjusting the layer number,the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m^(–3) with a thickness about 19μm.Interestingly that,the DM@CNF film with annealing treatment achieves significant improvement in conductivity(up to 17264 S·m^(–1))and EMI properties(SE of 41.90 dB and SSE/t of 10169 dB·cm^(2)·g–1),which still maintains relatively high mechanical properties.It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based,carbon-based and MXene-based shielding materials reported in the literature.These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices. 展开更多
关键词 MXene DOPAMINE cellulose nanofibers electromagnetic interference shielding performance mechanical properties
原文传递
Comparative Analysis of Bilateral Permanent Magnet Linear Synchronous Motors With Different Structures 被引量:4
3
作者 Fengrui Cui Zhaolong Sun +2 位作者 Wei Xu Weichang Zhou Yi Liu 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第2期142-150,共9页
Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are e... Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions. 展开更多
关键词 Bilateral permanent magnet linear synchronous motor(BPMLSM) analytical method finite element algorithm(FEA) electromagnetic performance.
下载PDF
Three-dimensional Analytical Modeling of Axial Flux Permanent Magnets Maglev Motor
4
作者 Wei Qin Gang Lv Yuhua Ma 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第4期438-444,共7页
The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic charact... The three-dimensional(3D)analytical model of the magnetic field in an Axial Flux Permanent Magnets Maglev Motor(AFPMMM)is proposed and investigated the influence of the structural parameters on electromagnetic characteristics.Firstly,the topology and working principle of the AFPMMM is introduced,and the model is transferred into a mathematical model in 3D cartesian coordinate.Then,the volume integral method and equivalent current sheets model is applied to find the 3D magnetic field distribution function of Halbach rotor.A unified form expression can be obtained by two dimensional discrete fourier transform(2-D DFT)is applied on the 3D magnetic field distribution function.Thirdly,the conductive and nonconductive regions of AFPMMM will be formulated by the second order vector potential(SOVP)to built the 3D analytic model.The expression of the lift force,torque and power losses was derived.Besides,the relationship between electromagnetic characteristics and structural parameters of the AFPMMM were analyzed based on 3D analytic model and validated using the 3D finite element analysis(FEA).Finally,the experiments based on a small scale prototype are carried out to verify the analytical results. 展开更多
关键词 Axial flux Permanent magnet machines MAGLEV Analytical model electromagnetic performance
下载PDF
Investigation of an Intensifying-flux Variable Flux-leakage Interior Permanent Magnet Machine for Wide Speed Range
5
作者 Xiping Liu Dabin Liu +1 位作者 Siting Zhu Jianwei Liang 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第2期207-215,共9页
In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-... In this paper,a novel intensifying-flux variable flux-leakage interior permanent magnet(IFVF-IPM)machine is proposed,in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property.The rotor topology and design principles of the proposed machine are also introduced.Then,a multi-objective optimization method is adopted based on the sensitivity analysis,and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ).Moreover,the electromagnetic characteristics of conventional IPM machine,conventional IFVF-IPM machine(CIFVF-IPM)and the novel IFVF-IPM machine are compared based on the finite element analysis(FEA)method which includes flux linkage,inductances characteristic,torque-speed envelops and power characteristic,as well as evaluation of the risk of irreversible demagnetization.Finally,the experiment results show that the IFVF-IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization,which indicates the validity and feasibility of the proposed machine. 展开更多
关键词 Interior permanent magnet(IPM)machine Intensifying-flux Variable flux-leakage electromagnetic performance DEMAGNETIZATION Finite element analysis(FEA) Wide speed range
下载PDF
Optimization Design and Analysis of a Hybrid Permanent Magnet Flux-Switching Motor with Compound Rotor Configuration
6
作者 Zixuan Xiang Xiaoyong Zhu +1 位作者 Li Quan Deyang Fan 《CES Transactions on Electrical Machines and Systems》 2018年第2期200-206,共7页
This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the pr... This paper proposes a type of flux-switching permanent magnet(FSPM)motor,where the design concept of the hybrid permanent magnets(HPM)and the compound rotor are incorporated into the motor design.In such design,the proposed motor can not only realize the significant reduction of NdFeB volume,but also artfully convert external magnetic flux leakage into the air-gap field to achieve competitive torque density and desirable PM usage efficiency.For extensive investigation,two topologies of the HPM are designed and analyzed for the proposed motor,which consist of the parallel-magnetic-hybrid(PMH)mode and serial-magnetic-hybrid(SMH)mode.To fully exploit the potential advantages of the proposed motor,a multi-objective optimization design is conducted,where the response surface method(RSM)and sequential non-linear programming(SNP)method are purposely utilized.After optimization,the electromagnetic performances of the motor with PMH mode and SMH mode are evaluated and compared by using finite element method(FEM),which include the back-EMF,cogging torque,output torque,and so on.Furthermore,the partial demagnetization of the ferrite PM is also investigated in the paper.Finally,the theoretical analysis and simulation study verify the effectiveness of the proposed motor and corresponding optimization design. 展开更多
关键词 electromagnetic performances flux-switching permanent magnet(FSPM)motor hybrid permanent magnets(HPM) multi-objective optimization.
下载PDF
Janus(BNNS/ANF)-(AgNWs/ANF)thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances 被引量:20
7
作者 Yixin Han Kunpeng Ruan Junwei Gu 《Nano Research》 SCIE EI CSCD 2022年第5期4747-4755,共9页
Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i... Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests). 展开更多
关键词 thermal conductivity composite film Janus structure aramid nanofibers electromagnetic interference shielding performance Joule heating
原文传递
Microwave induced in-situ formation of SiC nano wires on SiCNO ceramic aerogels with excellent electromagnetic wave absorption performance 被引量:1
8
作者 Keke YUAN Daoyang HAN +9 位作者 Junfang LIANG Wanyu ZHAO Mingliang LI Biao ZHAO Wen LIU Hongxia LU Hailong WANG Hongliang XU Gang SHAO Rui ZHANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第5期1140-1151,共12页
Electromagnetic absorption(EMA)materials with light weight and harsh environmental robustness are highly desired and crucially important in the stealth of high-speed vehicles.However,meeting these two requirements is ... Electromagnetic absorption(EMA)materials with light weight and harsh environmental robustness are highly desired and crucially important in the stealth of high-speed vehicles.However,meeting these two requirements is always a great challenge,which excluded the most attractive lightweight candidates,such as carbon-based materials.In this study,SiC_(nw)-reinfbrced SiCNO(SiC_(nw)/SiCNO)composite aerogels were fabricated through the in-situ growth of SiC_(nw) in polymer-derived SiCNO ceramic aerogels by using catalyst-assisted microwave heating at ultra-low temperature and in short time.The phase composition,microstructure,and EMA property of the SiC_(nw)/SiCNO composite aerogels were systematically investigated.The results indicated that the morphology and phase composition of SiC_(nw)/SiCNO composite aerogels can be regulated easily by varying the microwave treatment temperature.The composite aerogels show excellent EMA property with minimum reflection loss of -23.9 dB@13.8 GHz,-26.5 dB@10.9 GHz,and -20.4 dB@14.5 GHz and the corresponding effective bandwidth of 5.2 GHz,3.2 GHz,and 4.8 GHz at 2.0 mm thickness for microwave treatment at 600℃,800℃,and 1000℃,respectively,which is much better than that of SiCN ceramic aerogels.The superior EMA performance is mainly attributed to the improved impedance matching,multireflection,multi-interfacial polarization,and micro current caused by migration of hopping electrons. 展开更多
关键词 polymer-derived SiCNO ceramic aerogel SiC nanowires(SiC_(nw)) microwave heating electromagnetic absorption(EMA)performance
原文传递
Simultaneously improving the EMI shielding performances and mechanical properties of CF/PEKK composites via MXene interfacial modification 被引量:2
9
作者 Xueqin Yang Jiamei Luo +7 位作者 Hongliang Ren Yi Xue Chenxi Yang Ting Yuan Zehao Yang Yong Liu Hui Zhang Jianyong Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期202-209,共8页
In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic inte... In this study, two-dimensional MXene (Ti3 C2 Tx ) was employed to modify the interface of carbon fiber-reinforced polyetherketoneketone (CF/PEKK) composites, in order to simultaneously improve the electromagnetic interference (EMI) shielding performances and mechanical properties. The obtained CF/PEKK composites possessed outstanding EMI and mechanical performances, as anticipated. Specifically, the CF/PEKK composites modified with MXene at 1 mg mL–1 exhibited an excellent EMI shielding effectiveness of 65.2 dB in the X-band, a 103.1% enhancement compared with the unmodified CF/PEKK composites. The attractive EMI shielding performances of CF/PEKK composites originated from enhanced ohmic losses and multiple reflections of electromagnetic waves with the help of the MXene and CF layers. In addition, CF/PEKK composites achieved the best mechanical properties by optimizing the dispersion concentration of MXene to 0.1 mg mL–1 . The flexural strength, flexural modulus, and interlaminar shear strength of CF/PEKK composites reached 1127 MPa, 81 GPa, and 89 MPa, which were 28.5%, 9.5%, and 29.7% higher than that of the unmodified CF/PEKK composites, respectively. Such improvement in mechanical properties could be ascribed to the comprehensive effect of mechanical interlocking, hydrogen bonds, and Van der Waals forces between the introduced MXene and CF, PEKK, respectively. 展开更多
关键词 CF/PEKK composites Ti3C2T MXene electromagnetic interference shielding performances Interfacial interactions
原文传递
Novel Rotors with Low Eddy Current Loss for High Speed Permanent Magnet Machines
10
作者 Xin Cheng Wei Xu +2 位作者 Guanghui Du Guohui Zeng Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期187-194,共8页
Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resultin... Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resulting in irreversible demagnetization of the permanent magnet(PM).To obtain low rotor temperature,two novel rotor structures with low rotor eddy current loss are proposed in this paper.With the output torque and air gap flux density unchanged,the performance of HSPMMs with the two proposed rotor structures are analyzed based on finite element algorithm(FEA),including eddy current loss and temperature.Finally,the appropriate parameters of the proposed rotor structures are selected,and the electromagnetic(EM)performance,rotor stress and temperature are compared with those of the conventional rotor structure.Index Terms-Eddy current loss,finite element algorithm(FEA),electromagnetic(EM)performance,high speed permanent magnet machines(HSPMMs). 展开更多
关键词 Eddy current loss finite element algorithm(FEA) electromagnetic(EM)performance high speed permanent magnet machines(HSPMMs).
下载PDF
Multiaxial electrospun generation of hollow graphene aerogel spheres for broadb and high-performance microwave absorption 被引量:13
11
作者 Tian Li Dandan Zhi +3 位作者 Yao Chen Bing Li Zuowan Zhou Fanbin Meng 《Nano Research》 SCIE EI CAS CSCD 2020年第2期477-484,共8页
Although graphene aerogels(GA)have been attracted great attention,the easy-operation and large-scale production of GA are still challenges.Further,most GA have a monolith-like appearance,limiting their application-spe... Although graphene aerogels(GA)have been attracted great attention,the easy-operation and large-scale production of GA are still challenges.Further,most GA have a monolith-like appearance,limiting their application-specific needs.Herein,we highlight graphene aerogel spheres with controllable hollow structures(HGAS)that are delicately designed and manufactured via coaxial electrospinning coupled with freeze-drying and calcination.The HGAS exhibit a spherical configuration at the macroscale,while the construction elements of graphene on the microscale showing an interconnected radial microchannel structure.Further ball-in-ball graphene aerogel spheres(BGAS)are obtained by reference to the triaxial electrospinning technology.The as-prepared spheres possess the controllable integrated conductive networks,leading to the effective dielectric loss and impedance matching thus bringing on high-performance microwave absorption.The as-obtained HGAS shows a minimum reflection loss of-52.7 dB and a broad effective absorption bandwidth(f)of 7.0 GHz with thickness of 2.3 mm.Further,the fe reaches 9.3 GHz for BGAS with thickness of 3.4 mm.Aforementioned superior microwave absorption of HGAS and BGAS confirms combination of multiaxial electrospinning and freeze-drying on the multiscale is an effective strategy for scalable fabrication of advanced microwave.absorbing functional graphene aerogel spheres. 展开更多
关键词 multiaxial electrospinning hollow graphene aerogel spheres hierarchical porous structures electromagnetic performance
原文传递
Microwave absorption performance of FeCoNiAlCr_(0.9)alloy powders by adjusting the amount of process control agent 被引量:3
12
作者 Yuping Duan Huifang Pang +2 位作者 Xin Wen Xuefeng Zhang Tongmin Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第18期209-216,共8页
Different amounts of absolute ethanol(0-50 mL)are used as process control agents(PCA)to prepare FeCoNiAlCr0.9 high entropy alloy(HEA)powders via 90 h ball milling.The results show that the increased amount of PCA play... Different amounts of absolute ethanol(0-50 mL)are used as process control agents(PCA)to prepare FeCoNiAlCr0.9 high entropy alloy(HEA)powders via 90 h ball milling.The results show that the increased amount of PCA plays an active role in the crystallinity of powders,and regulate the thickness and size distribution of flake particles.As the volume of PCA increases,the real and imaginary parts(ε′andε″)of complex permittivity get increased by the enhancement of the interface polarization and surface polarization,while the increase in the real and imaginary parts(μ′andμ″)of complex permeability arises from the increased anisotropic energy.The addition of PCA not only promotes the reflection loss but also extends the effective bandwidth(up to 4.28 GHz).Here,the performance adjustment of HEA electromagnetic absorber is realized by forthrightly changing the process parameters of ball milling. 展开更多
关键词 FeCoNiAlCr_(0.9) Ball milling electromagnetic performance Process control agent
原文传递
Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption 被引量:5
13
作者 Lixue Gai Honghong Zhao +4 位作者 Fengyuan Wang Pan Wang Yonglei Liu Xijiang Han Yunchen Du 《Nano Research》 SCIE EI CSCD 2022年第10期9410-9439,共30页
Electromagnetic(EM)absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation.As characteristic functional media that... Electromagnetic(EM)absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation.As characteristic functional media that can interact with electric or magnetic field branch,EM wave absorption materials(EWAMs)have received extensive attention and realized considerable development in the past two decades,where carbon-based composites are always considered as promising candidates for high-performance EMAWs due to their synergetic loss mechanism as well as diversified composition and microstructure design.Recent progress indicates that there is more and more interest in the fabrication of carbon-based composites with unique core–shell configuration.On one hand,core–shell configuration usually ensures good chemical homogeneity of final products and provides some positive protections for the components with susceptibility to corrosion,on the other hand,it creates enough heterogeneous interfaces between different EM components,which may bring enhanced polarization effect and intensify the consumption of EM energy.In this review,we firstly introduce EM wave absorption theory,and then highlight the advances of core–shell engineering in carbonbased composites in terms of built-in carbon cores and built-out carbon shells.Moreover,we also show some special core–shell carbon-based composites,including carbon/carbon composites,assembled composites,and decorated composites.After analyzing EM absorption performance of some representative composites,we further propose some challenges and perspectives on the development of core–shell carbon-based composites. 展开更多
关键词 carbon-based composites core-shell configuration synergetic effect interfacial polarization electromagnetic(EM)absorption performance
原文传递
HCl guided morphology and conductivity of chiral PPy nanostructures toward efficient electromagnetic wave absorption
14
作者 YANG XiaoFen FAN BaoXin +5 位作者 WANG XinXin WU LiShan YAO QiBin TONG GuoXiu WU WenHua CHEN DaBo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第4期837-848,共12页
To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as... To solve the severe electromagnetic(EM)radiation from the widespread application of electronic equipment,we developed a simple template-guided oxypolymerization strategy to synthesize polypyrrole(PPy)planar helixes as an efficient EM wave(EMW)absorber,and systematically investigated the morphology-dependent chirality,conductivity,and microwave absorption properties.As HCl concentration[HCl]varied from 0 to 2.0 M,the morphology evolved from planar helix to 3D cross-linking network structures,the conductivity increased from 0.0019 to 0.0302 S/cm,and the EM parameters peaked at[HCl]=0.5 M.Compared to other absorbers,the PPy planar helix formed at[HCl]=0 M possessed wider absorption band(5.84 GHz),smaller matching thickness(1.6 mm),lower loading(25 wt.%),and intenser absorption(-48.17 dB).The reason lies in the strong attenuation capability,multiple resonances,multiple scattering,and good impedance matching generated by chiral PPy planar helixes with a distinctive helical configuration,doped heteroatoms(O,S),and a local conductive network.Our results suggest that PPy planar helixes offer great promise for fields such as chiral sensors,electronics,optics,chiral catalysis,and EMW absorption and shielding due to their distinctive morphology,tunable conductivity,and outstanding EMW absorption properties(EMWAPs). 展开更多
关键词 PPy planar helix CTAB template assisted oxypolymerization strategy electromagnetic wave absorption performance absorption mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部