A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac ...A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic (Green's) function equation was first decomposed into the non-divergence electrical vector dyadic (Green's) function equation and irrotational electrical vector dyadic (Green's) function equation,and then (Fourier's) transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic (Green's) function in chiral media.It can avoid having to use the wavefield decomposition method and dyadic (Green's) function eigenfunction expansion technique that this method is used to derive the dyadic (Green's) functions in chiral media.展开更多
文摘A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic (Green's) function equation was first decomposed into the non-divergence electrical vector dyadic (Green's) function equation and irrotational electrical vector dyadic (Green's) function equation,and then (Fourier's) transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic (Green's) function in chiral media.It can avoid having to use the wavefield decomposition method and dyadic (Green's) function eigenfunction expansion technique that this method is used to derive the dyadic (Green's) functions in chiral media.