期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Single-source-precursor derived Sioc ceramics with in-situ formed CNTs and core-shell structured CoSi@C nanoparticles towards excellent electromagnetic wave absorption properties 被引量:1
1
作者 Zhaoju Yu Ting Chen +2 位作者 Hanzi Du Fen Li Qikun Zhu 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第6期1119-1135,共17页
In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor de... In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor derived ceramic approach.Ppolymericprecursor characterization as well as phase evolution,microstructure,and electromagnetic wave(EMW)absorption properties of the ceramics were investigated in detail.The results show that the in-situ formed CNTs and magnetic CoSi@C nanoparticles provide a synergistic effect on both dielectric loss(tand:)and magnetic loss,leading to outstanding EMW absorption properties of the ceramics annealed at only 1100 C.(i)For the Co feeding of 6.25 wt%,the minimum reflection loss(RLmin)is-53.1 dB,and the effective absorption bandwidth(EAB)is 4.96 GHz(7.12-12.08 GHz)with a ceramic-paraffin hybrid sample thickness of 3.10 mm,achieving full X-band coverage;(i)for the Co feeding of 9.09 wt%,the RLmin value of-66.4 dB and the EAB value of 3.04 GHz(8.40-11.44 GHz)were achieved with a thickness of only 2.27 mm.Therefore,the present CNT/CoSi/SiOC nanocomposite ceramics have potential applications for thin,lightweight,and efficient EMW absorption in harsh environments. 展开更多
关键词 polymer-derived ceramics(PDCs) in-situ formed carbon nanotubes(CNTs) core-shell structure electromagnetic properties electromagnetic wave(EMW)absorption properties
原文传递
Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application 被引量:3
2
作者 Xingmin Liu Nan Chai +5 位作者 Zhaoju Yu Hailong Xu Xinliang Li Jiquan Liu Xiaowei Yin Ralf Riedel 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2859-2867,共9页
Ultra-light carboxylic functionalized multi-walled carbon nanotubes(CNTs-COOH) and Ti3C2 MXene hybrids modified sodium alginate(CNTs/Ti3C2-SA) based composite foams were prepared through ice-templated freeze-drying me... Ultra-light carboxylic functionalized multi-walled carbon nanotubes(CNTs-COOH) and Ti3C2 MXene hybrids modified sodium alginate(CNTs/Ti3C2-SA) based composite foams were prepared through ice-templated freeze-drying method. The microstructure of the synthesized CNTs/Ti3C2 hybrids and CNTs/Ti3C2-SA foams is characterized by the presence of CNTs inserted between MXene layers which prevents their restacking. The resultant CNTs/Ti3C2 hybrids exhibit a unique sandwich-like hierarchical structure. Scanning electron microscopy(SEM) images show that the CNTs/Ti3C2-SA foam exhibits a heterogeneous anisotropic microstructure and CNTs/Ti3C2 hybrids are homogeneously dispersed in the skeleton of the porous foam. In case that the content of the hybrids amounts 40 mg/cm^3, the CNTs/Ti3C2-SA foam possesses excellent electromagnetic(EM) absorption performance with a minimum reflection coefficient(RCmin) as low as-40.0 dB. In case of a sample thickness of 3.95 mm, the RCminreaches-24.4 dB and the effective absorption bandwidth covers the whole X band from 8.2 to 12.4 GHz. A control test shows that, with the same absorbent content, the CNTs/Ti3C2-SA foam exhibits a far better EM performance than that of CNT-free Ti3C2-SA foam. 展开更多
关键词 Carbon nanotubes MXene Sodium alginate electromagnetic absorption properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部