In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor de...In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor derived ceramic approach.Ppolymericprecursor characterization as well as phase evolution,microstructure,and electromagnetic wave(EMW)absorption properties of the ceramics were investigated in detail.The results show that the in-situ formed CNTs and magnetic CoSi@C nanoparticles provide a synergistic effect on both dielectric loss(tand:)and magnetic loss,leading to outstanding EMW absorption properties of the ceramics annealed at only 1100 C.(i)For the Co feeding of 6.25 wt%,the minimum reflection loss(RLmin)is-53.1 dB,and the effective absorption bandwidth(EAB)is 4.96 GHz(7.12-12.08 GHz)with a ceramic-paraffin hybrid sample thickness of 3.10 mm,achieving full X-band coverage;(i)for the Co feeding of 9.09 wt%,the RLmin value of-66.4 dB and the EAB value of 3.04 GHz(8.40-11.44 GHz)were achieved with a thickness of only 2.27 mm.Therefore,the present CNT/CoSi/SiOC nanocomposite ceramics have potential applications for thin,lightweight,and efficient EMW absorption in harsh environments.展开更多
Ultra-light carboxylic functionalized multi-walled carbon nanotubes(CNTs-COOH) and Ti3C2 MXene hybrids modified sodium alginate(CNTs/Ti3C2-SA) based composite foams were prepared through ice-templated freeze-drying me...Ultra-light carboxylic functionalized multi-walled carbon nanotubes(CNTs-COOH) and Ti3C2 MXene hybrids modified sodium alginate(CNTs/Ti3C2-SA) based composite foams were prepared through ice-templated freeze-drying method. The microstructure of the synthesized CNTs/Ti3C2 hybrids and CNTs/Ti3C2-SA foams is characterized by the presence of CNTs inserted between MXene layers which prevents their restacking. The resultant CNTs/Ti3C2 hybrids exhibit a unique sandwich-like hierarchical structure. Scanning electron microscopy(SEM) images show that the CNTs/Ti3C2-SA foam exhibits a heterogeneous anisotropic microstructure and CNTs/Ti3C2 hybrids are homogeneously dispersed in the skeleton of the porous foam. In case that the content of the hybrids amounts 40 mg/cm^3, the CNTs/Ti3C2-SA foam possesses excellent electromagnetic(EM) absorption performance with a minimum reflection coefficient(RCmin) as low as-40.0 dB. In case of a sample thickness of 3.95 mm, the RCminreaches-24.4 dB and the effective absorption bandwidth covers the whole X band from 8.2 to 12.4 GHz. A control test shows that, with the same absorbent content, the CNTs/Ti3C2-SA foam exhibits a far better EM performance than that of CNT-free Ti3C2-SA foam.展开更多
基金the National Natural Science Foundation of China(Nos.51872246 and 52061135102)for financial support.
文摘In this work,novel carbon nanotube(CNT)/CoSi/SiOC nanocomposite ceramics with in-situ formed multi-walled CNTs and core-shell structured CoSi@C nanoparticles were successfully prepared via a single-source-precursor derived ceramic approach.Ppolymericprecursor characterization as well as phase evolution,microstructure,and electromagnetic wave(EMW)absorption properties of the ceramics were investigated in detail.The results show that the in-situ formed CNTs and magnetic CoSi@C nanoparticles provide a synergistic effect on both dielectric loss(tand:)and magnetic loss,leading to outstanding EMW absorption properties of the ceramics annealed at only 1100 C.(i)For the Co feeding of 6.25 wt%,the minimum reflection loss(RLmin)is-53.1 dB,and the effective absorption bandwidth(EAB)is 4.96 GHz(7.12-12.08 GHz)with a ceramic-paraffin hybrid sample thickness of 3.10 mm,achieving full X-band coverage;(i)for the Co feeding of 9.09 wt%,the RLmin value of-66.4 dB and the EAB value of 3.04 GHz(8.40-11.44 GHz)were achieved with a thickness of only 2.27 mm.Therefore,the present CNT/CoSi/SiOC nanocomposite ceramics have potential applications for thin,lightweight,and efficient EMW absorption in harsh environments.
文摘Ultra-light carboxylic functionalized multi-walled carbon nanotubes(CNTs-COOH) and Ti3C2 MXene hybrids modified sodium alginate(CNTs/Ti3C2-SA) based composite foams were prepared through ice-templated freeze-drying method. The microstructure of the synthesized CNTs/Ti3C2 hybrids and CNTs/Ti3C2-SA foams is characterized by the presence of CNTs inserted between MXene layers which prevents their restacking. The resultant CNTs/Ti3C2 hybrids exhibit a unique sandwich-like hierarchical structure. Scanning electron microscopy(SEM) images show that the CNTs/Ti3C2-SA foam exhibits a heterogeneous anisotropic microstructure and CNTs/Ti3C2 hybrids are homogeneously dispersed in the skeleton of the porous foam. In case that the content of the hybrids amounts 40 mg/cm^3, the CNTs/Ti3C2-SA foam possesses excellent electromagnetic(EM) absorption performance with a minimum reflection coefficient(RCmin) as low as-40.0 dB. In case of a sample thickness of 3.95 mm, the RCminreaches-24.4 dB and the effective absorption bandwidth covers the whole X band from 8.2 to 12.4 GHz. A control test shows that, with the same absorbent content, the CNTs/Ti3C2-SA foam exhibits a far better EM performance than that of CNT-free Ti3C2-SA foam.