The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of e...The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of electromagnetic(EM)core-mantle coupling.However,past estimations of the EM coupling torque from surface geomagnetic observations is too weak to account for the observed decadal polar motion.Our recent estimations from numerical geodynamo simulations have shown the opposite.In this paper,we re-examine in detail the EM coupling mechanism and the properties of the magnetic field in the electrically conducting lower mantle(characterized by a thin D '-layer at the base of the mantle).Our simulations find that the toroidal field in the D'-layer from the induction and convection of the toroidal field in the outer core could be potentially much stronger than that from the advection of the poloidal field in the outer core.The former,however,cannot be inferred from geomagnetic observations at the Earth’s surface,and is missing in previous EM torque estimated from geomagnetic observations.Our deduction suggests further that this field could make the actual EM coupling torque sufficiently strong,at approximately 5×1019 Nm,to excite,and hence explain,the decadal polar motion to magnitude of approximately 10 mas.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing th...A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate...To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.展开更多
A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radi...A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.展开更多
The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation me...The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation method on pipeline interference voltage under harmonic induction is presented.The results show that the Carson integral formula is more accurate in calculating the mutual impedance at higher frequencies.Then,an integrated train-network-pipeline model is established to estimate the influences of harmonic distortion and resonance on an MP.It is revealed that the higher the harmonic cur-rent distortion rate of the traction load,the larger the interference voltage on an MP.Particularly,the interference voltage is amplified up to 7 times when the TPSS resonates,which is worthy of attention.In addition,the parameters that affect the variation and sensitivity of the interference voltage are studied,namely,the pipeline coating material,locomotive position,and soil resistivity,indicating that soil resistivity and 3PE(3-layer polyethylene)anticorrosive coating are more sensitive to harmonic induction.Field test results show that the harmonic distortion can make the interference voltage more serious,and the protective measures are optimized.展开更多
As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidiscipli...As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidisciplinary method was proposed for revealing the influence mechanism of load on EMLA’s loss.The motion trajectory of EMLA is planned through tracking differentiator,an adaptive robust control was adopted to compensate the influence of load on motion trajectory.A control-electromagnetic-mechanical coupling model was established and verified experimentally.The influence laws of load change on EMLA’s loss,loss composition and loss distribution were analyzed quantitatively.The results show that the data error of experiment,and simulation result of input energy,mechanical work,and iron loss is less than 3%.The iron loss accounts for less than 54.9%of the total loss under no-load condition,while the iron loss increases with the increase of load.For iron loss distribution,only the percentage of inner yoke keeps increasing with the increase of load.The composition and distribution of loss are the basis of thermal analysis and design.展开更多
A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including...A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including an electromagnetic field will be written as an eight-component real spinor equation by separating it into its real and imaginary parts. Through this decomposition, what becomes obvious is the way in which the electromagnetic field couples to charged fermions (electron and positron) when being described by real spinor fields. Thus, contrary to common expectation, charged fermions can also be described by a real Dirac equation if they are considered as a doublet related to the SO(2) symmetry group, which enables a matrix coupling to the electromagnetic field and corresponds to the usual U(1) gauge symmetry of the standard Dirac equation.展开更多
In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power a...In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.展开更多
We study the coupling problem of two waveguide antennas using the design of a two-dimensional inhomogeneous impedance structure with a fixed reflected field. Since this structure enables electromagnetic compatibility ...We study the coupling problem of two waveguide antennas using the design of a two-dimensional inhomogeneous impedance structure with a fixed reflected field. Since this structure enables electromagnetic compatibility between antennas located on a plane, the behaviors of the electromagnetic field along the impedance structure are investigated. The method of moments is used to solve the integral equations and the numerical results are presented and analyzed. To reduce coupling between antennas, we need to take into account both the amplitude distribution of the field along the structure and in the openings of the antennas. In addition, while designing the structure, it is necessary to control the coefficient of decoupling.展开更多
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i...This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.展开更多
A numerical model coupling the various physical phenomena (electromagnetic, thermal and mechanical) taking place in the induction heating process has been developed. The mathematical model and the numerical methods ar...A numerical model coupling the various physical phenomena (electromagnetic, thermal and mechanical) taking place in the induction heating process has been developed. The mathematical model and the numerical methods are presented here, along with some results ( electric, thermal and mechanical fields in the workpiece)展开更多
A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model i...A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.展开更多
Epilepsy is believed to be associated with the abnormal synchronous neuronal activity in the brain,which results from large groups or circuits of neurons.In this paper,we choose to focus on the temporal lobe epilepsy,...Epilepsy is believed to be associated with the abnormal synchronous neuronal activity in the brain,which results from large groups or circuits of neurons.In this paper,we choose to focus on the temporal lobe epilepsy,and establish a cortex network of multiple coupled neural populations to explore the epileptic activities under electromagnetic induction.We demonstrate that the epileptic activities can be controlled and modulated by electromagnetic induction and coupling among regions.In certain regions,these two types of control are observed to show exactly reverse effects.The results show that the strong electromagnetic induction is conducive to eliminating the epileptic seizures.The coupling among regions has a conduction effect that the previous normal background activity of the region gives way to the epileptic discharge,owing to coupling with spike wave discharge regions.Overall,these results highlight the role of electromagnetic induction and coupling among the regions in controlling and modulating epileptic activities,and might provide novel insights into the treatments of epilepsy.展开更多
A comprehensive mathematical model of annulus-electromagnetic direct chill (A-EMDC) casting of A357 aluminum alloy was established with corresponding experimental verification. The model was based on a combination o...A comprehensive mathematical model of annulus-electromagnetic direct chill (A-EMDC) casting of A357 aluminum alloy was established with corresponding experimental verification. The model was based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT. The effects of structural parameters on fluid flow, temperature field and solidification during A-EMDC process were investigated numerically. The results show that structural parameters such as annulus gap width, annulus gap position, and centre pipe length influence the flow and temperature fields. The smaller the annulus gap width is, the more uniform the temperature is, and the smaller the temperature gradient is. With increasing the centre pipe length, the circular flow would decrease due to the dislocation of centre pipe. Specially, when the annulus gap is located at periphery of the billet, the temperature gradient of the longitudinal direction in the solidification region falls evidently.展开更多
Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as eleme...Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled- source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.展开更多
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion,especially in the microwave absorption(MA) field...Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion,especially in the microwave absorption(MA) field.Herein,porous Ni1-xCox@Carbon composites derived from metal-organic framework(MOF)were successfully synthesized via solvothermal reaction and subsequent annealing treatments.Benefiting from the coordination,carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure.During the thermal decomposition,generated magnetic particles/clusters acted as a catalyst to promote the carbon sp^2 arrangement,forming special core-shell architecture.Therefore,pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites.Surprisingly,magnetic-dielectric Ni@C composites possessed the strongest reflection loss value-59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz.Meanwhile,the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%.Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.展开更多
基金supported by NASA Earth Surface and Interior (ESI) Program (W.K.and J.C.)NASA Geomagnetic Infrastructure Fund+4 种基金NASA GSFC SEEC Fund (W.K.)NASA GRACE Project (J.C.)Taiwan Ministry of Science and Technology via grant 106-2116-M-001-013(B. F. Chao)NASA GSFC fellowship programIES of Academia Sinica for support of visiting tenure
文摘The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of electromagnetic(EM)core-mantle coupling.However,past estimations of the EM coupling torque from surface geomagnetic observations is too weak to account for the observed decadal polar motion.Our recent estimations from numerical geodynamo simulations have shown the opposite.In this paper,we re-examine in detail the EM coupling mechanism and the properties of the magnetic field in the electrically conducting lower mantle(characterized by a thin D '-layer at the base of the mantle).Our simulations find that the toroidal field in the D'-layer from the induction and convection of the toroidal field in the outer core could be potentially much stronger than that from the advection of the poloidal field in the outer core.The former,however,cannot be inferred from geomagnetic observations at the Earth’s surface,and is missing in previous EM torque estimated from geomagnetic observations.Our deduction suggests further that this field could make the actual EM coupling torque sufficiently strong,at approximately 5×1019 Nm,to excite,and hence explain,the decadal polar motion to magnitude of approximately 10 mas.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
文摘A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金Project(51275211)supported by the National Natural Science Foundation of ChinaProject(11KJA580001)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(CXZZ12_0665)supported by the Postgraduate Innovation Natural Science Foundation of Jiangsu Province,China
文摘To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.
文摘A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.
基金This work was supported by the National Natural Science Foundation of China(No.51877182).
文摘The harmonics and resonance of traction power supply systems(TPSSs)aggravate the electromagnetic interference(EMI)to adjacent metallic pipelines(MPs),which has aroused widespread concern.In this paper,an evaluation method on pipeline interference voltage under harmonic induction is presented.The results show that the Carson integral formula is more accurate in calculating the mutual impedance at higher frequencies.Then,an integrated train-network-pipeline model is established to estimate the influences of harmonic distortion and resonance on an MP.It is revealed that the higher the harmonic cur-rent distortion rate of the traction load,the larger the interference voltage on an MP.Particularly,the interference voltage is amplified up to 7 times when the TPSS resonates,which is worthy of attention.In addition,the parameters that affect the variation and sensitivity of the interference voltage are studied,namely,the pipeline coating material,locomotive position,and soil resistivity,indicating that soil resistivity and 3PE(3-layer polyethylene)anticorrosive coating are more sensitive to harmonic induction.Field test results show that the harmonic distortion can make the interference voltage more serious,and the protective measures are optimized.
基金funded by the National Natural Science Foundation of China,Grant Nos.51905319,51975341,51875326the National Key Research and Development Project,China under Grant 2017YFB0102004the Shandong Provincial Natural Science Foundation,China under Grant ZR2019MEE049.
文摘As an energy converter,electromagnetic linear actuators(EMLAs)have been widely used in industries.Multidisciplinary methodology is a preferred tool for the design and optimization of EMLA.In this paper,a multidisciplinary method was proposed for revealing the influence mechanism of load on EMLA’s loss.The motion trajectory of EMLA is planned through tracking differentiator,an adaptive robust control was adopted to compensate the influence of load on motion trajectory.A control-electromagnetic-mechanical coupling model was established and verified experimentally.The influence laws of load change on EMLA’s loss,loss composition and loss distribution were analyzed quantitatively.The results show that the data error of experiment,and simulation result of input energy,mechanical work,and iron loss is less than 3%.The iron loss accounts for less than 54.9%of the total loss under no-load condition,while the iron loss increases with the increase of load.For iron loss distribution,only the percentage of inner yoke keeps increasing with the increase of load.The composition and distribution of loss are the basis of thermal analysis and design.
文摘A real version of the Dirac equation is derived and its coupling to the electromagnetic field considered. First the four-component real Majorana equation is briefly discussed. Then the complex Dirac equation including an electromagnetic field will be written as an eight-component real spinor equation by separating it into its real and imaginary parts. Through this decomposition, what becomes obvious is the way in which the electromagnetic field couples to charged fermions (electron and positron) when being described by real spinor fields. Thus, contrary to common expectation, charged fermions can also be described by a real Dirac equation if they are considered as a doublet related to the SO(2) symmetry group, which enables a matrix coupling to the electromagnetic field and corresponds to the usual U(1) gauge symmetry of the standard Dirac equation.
基金the Province Postdoctoral Foundation of Jiangsu(1501164B)the Technical Innovation Nurturing Foundation of Yangzhou University(2015CXJ016)China Postdoctoral Science Foundation(2016M600447)
文摘In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.
文摘We study the coupling problem of two waveguide antennas using the design of a two-dimensional inhomogeneous impedance structure with a fixed reflected field. Since this structure enables electromagnetic compatibility between antennas located on a plane, the behaviors of the electromagnetic field along the impedance structure are investigated. The method of moments is used to solve the integral equations and the numerical results are presented and analyzed. To reduce coupling between antennas, we need to take into account both the amplitude distribution of the field along the structure and in the openings of the antennas. In addition, while designing the structure, it is necessary to control the coefficient of decoupling.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974115)
文摘This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.
文摘A numerical model coupling the various physical phenomena (electromagnetic, thermal and mechanical) taking place in the induction heating process has been developed. The mathematical model and the numerical methods are presented here, along with some results ( electric, thermal and mechanical fields in the workpiece)
文摘A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.
基金Project supported by the National Natural Science Foundation of China(Nos.11772254 and 11972288)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2021106)。
文摘Epilepsy is believed to be associated with the abnormal synchronous neuronal activity in the brain,which results from large groups or circuits of neurons.In this paper,we choose to focus on the temporal lobe epilepsy,and establish a cortex network of multiple coupled neural populations to explore the epileptic activities under electromagnetic induction.We demonstrate that the epileptic activities can be controlled and modulated by electromagnetic induction and coupling among regions.In certain regions,these two types of control are observed to show exactly reverse effects.The results show that the strong electromagnetic induction is conducive to eliminating the epileptic seizures.The coupling among regions has a conduction effect that the previous normal background activity of the region gives way to the epileptic discharge,owing to coupling with spike wave discharge regions.Overall,these results highlight the role of electromagnetic induction and coupling among the regions in controlling and modulating epileptic activities,and might provide novel insights into the treatments of epilepsy.
基金Project (2009AA03Z534) supported by the Hi-tech Research and Development Program of China Project (2006CB605203) supported by National Basic Research Program of China
文摘A comprehensive mathematical model of annulus-electromagnetic direct chill (A-EMDC) casting of A357 aluminum alloy was established with corresponding experimental verification. The model was based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT. The effects of structural parameters on fluid flow, temperature field and solidification during A-EMDC process were investigated numerically. The results show that structural parameters such as annulus gap width, annulus gap position, and centre pipe length influence the flow and temperature fields. The smaller the annulus gap width is, the more uniform the temperature is, and the smaller the temperature gradient is. With increasing the centre pipe length, the circular flow would decrease due to the dislocation of centre pipe. Specially, when the annulus gap is located at periphery of the billet, the temperature gradient of the longitudinal direction in the solidification region falls evidently.
基金supported by the National Nature Science Foundation of China(Grant No.40874055)the Natural Science Foundation of the Hunan Province,China(Grant No.14JJ2012)
文摘Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled- source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.
基金supported by the Ministry of Science and Technology of China (973 Project No. 2018YFA0209102)the National Natural Science Foundation of China (11727807, 51725101, 51672050, 61790581)Science and Technology Commission of Shanghai Municipality (16DZ2260600)。
文摘Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion,especially in the microwave absorption(MA) field.Herein,porous Ni1-xCox@Carbon composites derived from metal-organic framework(MOF)were successfully synthesized via solvothermal reaction and subsequent annealing treatments.Benefiting from the coordination,carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure.During the thermal decomposition,generated magnetic particles/clusters acted as a catalyst to promote the carbon sp^2 arrangement,forming special core-shell architecture.Therefore,pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites.Surprisingly,magnetic-dielectric Ni@C composites possessed the strongest reflection loss value-59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz.Meanwhile,the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%.Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.