In this work, cobalt nanoparticles were syn- thesized by chemical reduction procedure. After the hydrophilic functionalization, Co/polypyrrole (PPy) nanocomposites were prepared by in situ polymerization of pyrrole ...In this work, cobalt nanoparticles were syn- thesized by chemical reduction procedure. After the hydrophilic functionalization, Co/polypyrrole (PPy) nanocomposites were prepared by in situ polymerization of pyrrole in aqueous dispersion of Co nanoparticles. The Co/ PPy nanocomposites show good electromagnetic properties with both magnetic loss and dielectric loss to electromag- netic wave. The electromagnetic wave absorbing band- width (reflection loss 〈-10 dB) for Co/PPy (20 wt%) is above 5.5 GHz at a thickness of 2 mm, and with a maximum reflection loss (around -20.02 dB) at 14.77 GHz. This magnetic nanoparticles/conducting polymer nanocomposites are great potential candidates for electromagnetic wave absorbent, because of their wide-absorbing frequency, strong absorption, good compatibility, low density, and controllable absorbing properties.展开更多
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform...Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.展开更多
The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) ...The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.展开更多
The influence of orientation on electromagnetic properties of basalt fibre/nickel core-shell heterostructures prepared by a simple electroless plating method is investigated. For comparison, the same investigation is ...The influence of orientation on electromagnetic properties of basalt fibre/nickel core-shell heterostructures prepared by a simple electroless plating method is investigated. For comparison, the same investigation is also performed on naked basalt fibres. For electromagnetic measurement, the directions of basalt fibre/nickel and naked basalt fibres are parallel, random and perpendicular to the direction of external electric field, termed E11 sample, random sample and E⊥ sample, respectively. Electromagnetic anisotropy can be clearly observed in the basalt fibre/nickel core-shell heterostructures, while electromagnetic properties of naked basalt fibres are unrelated to the orientation. The E⊥ basalt fibre/nickel shows the highest dielectric loss but the lowest magnetic loss, and E11 basalt fibre/nickel exhibits the highest magnetic loss but the lowest dielectric loss. The dielectric loss of E⊥ basalt fibre/nickel is several times as large as that of Eli basalt fibre/nickel, which could be attributed to the increase of polarization relaxation time as a consequence of the nanosize-confinement effect. The magnetic loss of E11 basalt fibre/nickel is even one order of magnitude higher than that of E⊥ basalt fibre/nickel, which originates mainly from the natural magnetic resonance of basalt fibre/nickel core-shell heterostructures.展开更多
Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As...Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.展开更多
The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray d...The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray diffraction patterns(XRD) exhibited that a small amount of impure phase characterized to Ni(OH)2 was detected from the ammonia-treated Ni nanoparticles and the ammonia-treated Ni nanoparticles coated with PZT. After being pre-treated with aqueous ammonia, the PZT coating layer was more uniform and about 10 nm in thickness. The oxidation resistance of the ammonia-treated Ni nanoparticles coated with PZT, compared with that of the non-treated ones, was improved by about 66 ℃. The PZT shell layer prepared by in-situ reaction can greatly reduce the dielectric constant and improve the natural resonance loss at high frequency, so as to obtain the optimal impedance matching performance of the electromagnetic wave transmission.展开更多
The perovskite-type nanocrystal La0.8Sr0.2FeO3 was prepared using a sol-gel auto-combustion method with citric acid as the chelating agent. The metal ions coordination compound, obtained from nitrate and citrate, unde...The perovskite-type nanocrystal La0.8Sr0.2FeO3 was prepared using a sol-gel auto-combustion method with citric acid as the chelating agent. The metal ions coordination compound, obtained from nitrate and citrate, underwent an auto-combustion process and voluminous ashes formed when calcining the complex in the air. Some analytical methods, which consisted of FT-IR, XRD, TEM and wave-guide, were used to characterize the gel and the final products. It was shown that metal ions and carboxyl were combined to form a homogeneous organic complex base salts in the process of gelation. The nanocrystalline had dielectric loss in the microwave frequency range of measurement.展开更多
Ba 1 x Dy x Co 2 Fe 16 O 27 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) was prepared by the solid-state method. The phase structure was studied using powder X-ray diffraction (XRD), the electromagnetic properties were ...Ba 1 x Dy x Co 2 Fe 16 O 27 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) was prepared by the solid-state method. The phase structure was studied using powder X-ray diffraction (XRD), the electromagnetic properties were measured, and the reflection loss of Dy 3+ -doped ferrite material was calculated using electromagnetic parameters by the transmission line theory. All XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x ≤ 0.15. The values of ε ′ and ε ″ increased slightly with Dy 3+ ions doping. The values of μ″ and μ′ were improved with Dy 3+ doping, exhibiting excellent microwave magnetic performance. The reasons have also been discussed using the electromagnetic theory. Dy substitution could increase microwave-absorbing performance and broaden frequency band (reflection loss (RL) -10 dB), and the absorbing peak shifted to high-frequency position. When x = 0.2, ferrite layer exhibited the most excellent microwave-absorbing performance at a thin matching thickness of 1.5 mm. The peak value of RL was around -15 dB, and the frequency band (RL -10 dB) was about 7 GHz (from 8 to 15 GHz).展开更多
100%green carbon foam from the fibrous fruits of Platanus Orientalis-L(Plane)along with the tar oil as binder has been prepared using a powder molding technique.The objective was to develop a porous monolithic carbon ...100%green carbon foam from the fibrous fruits of Platanus Orientalis-L(Plane)along with the tar oil as binder has been prepared using a powder molding technique.The objective was to develop a porous monolithic carbon from biomaterials with a considerable strength necessary for various physical,thermal and electromagnetic shielding applications.Fast carbonization was carried out at1000°C under the cover of Plane tree pyrolyzed seeds without using any external protective gas.For comparative analysis,some samples were mixed with5%(mass fraction)iron chloride during the molding process.Iron chloride being a graphitization catalyst and activating agent helped in increasing the specific surface area from88to294m2/g with a25%decrease in flexural strength.Thermal stability was improved due to the incorporation of more graphitic phases in the sample resulting in a little higher thermal conductivity from0.22to0.67W/(m·K).The catalytic carbon foam exhibited shielding effectiveness of more than20dB over the X-band frequency.Absorption was dominant with only8.26%?10.33%reflectance,indicating an absorption dominant shielding mechanism.The new material is quite suitable for high temperature thermal insulation being lightweight,highly porous with interconnected porous morphology most of which is preserved from the original biomaterial.展开更多
Nanocrystalline nickel zinc ferrite powders (Ni=Zn1-xFe2O4, A for x=0, B for x=0.2, C for x=0.5, D for x= 0.8 and E for x= 1) were synthesized by polyacrylamide gel method. X-ray diffraction (XRD), transmission el...Nanocrystalline nickel zinc ferrite powders (Ni=Zn1-xFe2O4, A for x=0, B for x=0.2, C for x=0.5, D for x= 0.8 and E for x= 1) were synthesized by polyacrylamide gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and wave-guide were used to characterize the composition. The XRD results show that the dried gel powders are amorphous, and the characteristic peaks of the spinel Ni0.5Zn0.5Fe2O4 appear after the gel is calcined at 400℃ for 1 h. When the calcining temperatures are 600 and 800℃, the average grain sizes are identified by TEM to be 10 and 30 nm, respectively. The NixZn1-xFe2O4 powders have both dielectric loss and magnetic loss in the frequency range of 8.2-11.0GHz. With the increase of Ni^2+ ions content, the dielectric parameters (ε′) and permeability (u′) of the NixZn1-xFe2O4 powders decrease while the dielectric loss (ε″), magnetic loss (u″) and the reflection loss increase.展开更多
Nanocrystalline Co0.5Zn0.5Fe2O4 ferrite was synthesized by polyacrylamide gel method. The electromagnetic and microwave absorption properties of the ferrite were investigated. The results indicated that calcining temp...Nanocrystalline Co0.5Zn0.5Fe2O4 ferrite was synthesized by polyacrylamide gel method. The electromagnetic and microwave absorption properties of the ferrite were investigated. The results indicated that calcining temperature of the ferrite had a significant influence on the effective properties of the ferrite. When the calcining temperature was 500, 600 and 700℃, the average size of particles was 10, 30 and 80 nm, respectively. The dielectric loss (ε″) and magnetic loss (μ″) of the ferrite was around 0.65 and 0.29 at 8.2 GHz, respectively. Microwave absorption properties of the ferrites were simultaneously influenced due to the strong correlation between reflection loss and electromagnetic parameters of the ferrite.展开更多
Nanocrystalline nickel ferrites with substitution of Fe3+ by rare-earth La3+, according to the formula NiLaxFe2-xO4 (with x=0, 0.05, 0.1 and 0.15), were prepared by polyacrylamide gel method. Influences of the amount ...Nanocrystalline nickel ferrites with substitution of Fe3+ by rare-earth La3+, according to the formula NiLaxFe2-xO4 (with x=0, 0.05, 0.1 and 0.15), were prepared by polyacrylamide gel method. Influences of the amount of La3+ substitution on the structure and electromagnetic properties of NiLaxFe2-xO4 compounds were systematically investigated by DSC-TG, XRD, TEM and wave-guide method. XRD results indicated that the pure spinel-type crystal structure of the NiLaxFe2-xO4 (x=0 and 0.05) was obtained at 500 ℃. TEM results showed that the average particle sizes of NiFe2O4 and NiLa0.1Fe1.9O4 particles were about 10 and 15 nm, respectively. The complex permittivity and complex permeability was measured in the frequency range of 8.2~12.4 GHz. The results revealed that the nanocrystalline NiLaxFe2-xO4 had both dielectric loss and magnetic loss in the frequency range of 8.2~12.4 GHz. The tgδε and tgδm of NiLaxFe2-xO4 (with x=0 and 0.05) decreased with the increase of La3+ ions content, and some strong resonance peaks of the tgδε and tgδm of NiLaxFe2-xO4 (with x=0.1 and 0.15) appeared because of the secondary phases (LaFeO3) and more lattice defects.展开更多
Through hydrothermal process, the chrysanthemum-like ZnO particles are prepared with zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) used as main resources under the different concentr...Through hydrothermal process, the chrysanthemum-like ZnO particles are prepared with zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) used as main resources under the different concentrations of surfactant polyacrylamide (PAM). The microstructure, morphology and the electromagnetic properties of the as-prepared products are characterized by high-resolution transmission electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM) and microwave vector network analyzer, respectively. The experimental results indicate that the as-prepared products are ZnO single crystalline with hexagona wurtzite structure, that the values of slenderness ratio Ld are different in different PAM concentrations, and that the good magnetic loss property is found in the ZnO products, and the average magnetic loss tangent tan δu increases with PAM concentration increasing, while the dielectric loss tangent tan ~e decreases.展开更多
Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-aSsorption properties. The morphology, heat-resistance, electromagnetic properties and mic...Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-aSsorption properties. The morphology, heat-resistance, electromagnetic properties and microwave absorption of raw-CIPs and silica-coated CIPs are investigated using a scanning electron microscope, an energy dispersive spectrometer, a thermal-gravimetric analyzer, and a network analyzer. The results show that the heat-resistance of silica-coated CIPs is better than that of raw CIFs. The reflection losses exceeding -lOdB of silica-coated CIPs are obtained in the frequency range 9.5-12.4 GHz for the absorber thickness of 2.3 mm, and the same reflection losses of uncoated CIPs reach the data in the lower frequency range for the same thickness. The enhanced microwave absorption of silica-coated CIPs can be ascribed to the combination of proper electromagnetic impedance match and the decrease of dielectric permittivity.展开更多
A microwave thruster system that can convert microwave power directly to thrust without a gas propellant is devel-oped. In the system, a cylindrical tapered resonance cavity and a magnetron microwave source are used r...A microwave thruster system that can convert microwave power directly to thrust without a gas propellant is devel-oped. In the system, a cylindrical tapered resonance cavity and a magnetron microwave source are used respectively as the thruster cavity and the energy source to generate the electromagnetic wave. The wave is radiated into and then reflected from the cavity to form a pure standing wave with non-uniform electromagnetic pressure distribution. Consequently, a net electromagnetic thrust exerted on the axis of the thruster cavity appears, which is demonstrated through theoretical calcula- tion based on the electromagnetic theory. The net electromagnetic thrust is also experimentally measured in the range from 70 mN to 720 mN when the microwave output power is from 80 W to 2500 W.展开更多
Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffr...Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Energy x-ray dispersive spectrometry and high- resolution images show that the granular composites have a classical core/shell structure with an MnO2 superficial layer, no more than 10 nm in thickness. The hysteresis measurements indicate that these submicron-size Ni composite powders have small remanence and moderate coercivity. The electromagnetic properties of the powders measured by a vector network analyzer in a frequency range of 2-18 GHz are also reported in detail.展开更多
Chrysanthemum-like ZnO nanowire clusters with different Mn-doping concentrations are prepared by a hydrothermal process. The microstructnre, morphology and electromagnetic properties are characterized by x-ray diffrac...Chrysanthemum-like ZnO nanowire clusters with different Mn-doping concentrations are prepared by a hydrothermal process. The microstructnre, morphology and electromagnetic properties are characterized by x-ray diffractometer high-resolution transmission electron microscopy (HRTEM), a field emission environment scanning electron microscope (FEESEM) and a microwave vector network analyser respectively. The experimental results indicate that the as- prepared products are Mn-doped ZnO single crystalline with a hexagonal wurtzite structure, that the growth habit changes due to Mn-doping and that a good magnetic loss property is found in the Mn-doped ZnO products, and the average magnetic loss tangent tandm is up to 0.170099 for 3% Mn-doping, while the dielectric loss tangent tande is weakened, owing to the fact that ions Mn2+ enter the crystal lattice of ZnO.展开更多
Currently,as the electromagnetic(EM)environment becomes increasingly complex,single-function EM materials can hardly resist the increasing electromagnetic interference(EMI),and there is an urgent need to develop multi...Currently,as the electromagnetic(EM)environment becomes increasingly complex,single-function EM materials can hardly resist the increasing electromagnetic interference(EMI),and there is an urgent need to develop multifunctional EM materials.In this work,multifunctional WSe_(2)/Co_(3)C was prepared by simple hydrothermal methods.Its dielectric performance and EM response were investigated.Efficient absorption,shielding performance,and energy conversion devices were customized.By tailoring the loading content,WSe_(2)/Co_(3)C can switch between EM absorption and EMI shielding.The maximum shielding effectiveness(SE)of WSe_(2)/Co_(3)C reached 36 dB,and high reflection loss(RL)of-60.28 dB and wide effective absorption bandwidth(EAB)of 6.16 GHz can be obtained at low thickness.The multiple EM attenuation mechanisms brought by the combination of two-dimensional(2D)WSe_(2) and magnetic Co_(3)C are considered to be the main reason for the enhanced EM attenuation ability.The WSe_(2)/Co_(3)C composite provides a viable candidate for developing multifunctional EM materials in 2–18 GHz.展开更多
The SrFe12O19@carbonyl iron(CI) core–shell composites used in microwave absorption are prepared by the metal–organic chemical vapor deposition(MOCVD). The x-ray diffractometer, scanning electron microscope, energy d...The SrFe12O19@carbonyl iron(CI) core–shell composites used in microwave absorption are prepared by the metal–organic chemical vapor deposition(MOCVD). The x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, and vector network analyzer are used to characterize the structural, electromagnetic, and absorption properties of the composites. The results show that the SrFe12O19@CI composites with a core–shell structure could be successfully prepared under the condition: deposition temperatures above 180℃, deposition time 30 min, and gas flow rate 30 m L/min.The electromagnetic properties of the composites change significantly, and their absorption capacities are improved. Of the obtained samples, those samples prepared at a deposition temperature of 180℃ exhibit the best absorption performance.The reflection loss of SrFe12O19@CI(180℃) with 1.5 mm–2.5 mm in thickness is less than-10 dB in a frequency range of 8 GHz–18 GHz, which covers the whole X band and Ku band.展开更多
Barium hexaferrites doped with Er3+, Ba1-xErxFe12O19, x=0.0, 0.01, 0.02, 0.04, 0.06, were prepared by the conventional ceramic technology. The structure and electromagnetic properties of the calcined samples were stud...Barium hexaferrites doped with Er3+, Ba1-xErxFe12O19, x=0.0, 0.01, 0.02, 0.04, 0.06, were prepared by the conventional ceramic technology. The structure and electromagnetic properties of the calcined samples were studied using powder X-ray diffraction (XRD) and network analyzer (Agilent 8722ET). All the XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x is below 0.02. The lattice parameters of ferrites doped with Er3+ decreased, indicating that the substitution of Er3+ occurs on Ba2+ basis site and results in a contract of the crystal cell. The microwave electromagnetic properties of the samples have been studied at the frequency range from 2 to 18 GHz. It was shown that ε′ increased slightly, and the maximum of ε″ appeared at low frequency position with Er3+ doping. μ″ and μ′ were improved significantly when x=0.01, and the maxima are 2 and 1.7, respectively. The reasons were also discussed using electromagnetic theory.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51101013 and 51371055)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-12-038A and FRF-TP-14-012A2)
文摘In this work, cobalt nanoparticles were syn- thesized by chemical reduction procedure. After the hydrophilic functionalization, Co/polypyrrole (PPy) nanocomposites were prepared by in situ polymerization of pyrrole in aqueous dispersion of Co nanoparticles. The Co/ PPy nanocomposites show good electromagnetic properties with both magnetic loss and dielectric loss to electromag- netic wave. The electromagnetic wave absorbing band- width (reflection loss 〈-10 dB) for Co/PPy (20 wt%) is above 5.5 GHz at a thickness of 2 mm, and with a maximum reflection loss (around -20.02 dB) at 14.77 GHz. This magnetic nanoparticles/conducting polymer nanocomposites are great potential candidates for electromagnetic wave absorbent, because of their wide-absorbing frequency, strong absorption, good compatibility, low density, and controllable absorbing properties.
基金supported by National Natural Science Foundation of China(No.52103361)Shaanxi University Youth Outstanding Talents Support Plan,Scientific and Technological Plan Project of Xi’an Beilin District(No.GX2143)。
文摘Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.
基金supported by the National Natural Science Foundation of China (No. 60561001)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (No. 200408020105)+1 种基金the Program for New Century Excellent Talents in Universities (No. NCET-05-0272)College Science and Technology Re-search Project of Inner Mongolia Autonomous Region, China (No. NJ04094)
文摘The manganite perovskite polycrystal samples of (La1-xDyx)2/3Sr1/3MnO3 (x = 0, 0.1, 0.2, 0.35, and 0.5) doped with Dy were prepared by solid state reaction in atmosphere to measure their X-ray diffraction (XRD) patterns, scanning electric microscope (SEM) images, infrared absorption spectra, and microwave electromagnetic properties. The displacement of the XRD peaks of the samples was found, and the 2θ increases from 0.05o to 0.5o. The grains of undoped La2/3Sr1/3MnO3 not only have the greatest size, but also the most regular shape. The size of the grains decreases as the Dy doping content increases from 0 to 0.5. The infrared absorption spectra of all samples were measured at room temperature. An absorption peak corresponding to the stretching vibration mode of Mn-O bonds appears within the range of 591-629 cm-1. The absorption peak shifts from a higher frequency to a lower one with the decrease of the average ionic radius of A-site. The frequency de- pendence of microwave-absorbing properties, imaginary components of the complex magnetic permeability μ" and dielectric permeability ε" for all samples was measured at room temperature from 8 to 13 GHz. The results show that the loss of microwave absorption can be attrib- uted to both the magnetic and electric losses. The increase of Dy content not only enhances the microwave absorption but also causes the displacement of the absorption peaks.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50872159)the National Defense Pre-Research Foundation of China (Grant Nos. 513180303 and A2220061080)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2004007021)
文摘The influence of orientation on electromagnetic properties of basalt fibre/nickel core-shell heterostructures prepared by a simple electroless plating method is investigated. For comparison, the same investigation is also performed on naked basalt fibres. For electromagnetic measurement, the directions of basalt fibre/nickel and naked basalt fibres are parallel, random and perpendicular to the direction of external electric field, termed E11 sample, random sample and E⊥ sample, respectively. Electromagnetic anisotropy can be clearly observed in the basalt fibre/nickel core-shell heterostructures, while electromagnetic properties of naked basalt fibres are unrelated to the orientation. The E⊥ basalt fibre/nickel shows the highest dielectric loss but the lowest magnetic loss, and E11 basalt fibre/nickel exhibits the highest magnetic loss but the lowest dielectric loss. The dielectric loss of E⊥ basalt fibre/nickel is several times as large as that of Eli basalt fibre/nickel, which could be attributed to the increase of polarization relaxation time as a consequence of the nanosize-confinement effect. The magnetic loss of E11 basalt fibre/nickel is even one order of magnitude higher than that of E⊥ basalt fibre/nickel, which originates mainly from the natural magnetic resonance of basalt fibre/nickel core-shell heterostructures.
基金the financial support from the National Key Research and Development Program of China(No.2017YFB0305500)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.
基金Funded by the National Natural Science Foundation of China(No.61201051)
文摘The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray diffraction patterns(XRD) exhibited that a small amount of impure phase characterized to Ni(OH)2 was detected from the ammonia-treated Ni nanoparticles and the ammonia-treated Ni nanoparticles coated with PZT. After being pre-treated with aqueous ammonia, the PZT coating layer was more uniform and about 10 nm in thickness. The oxidation resistance of the ammonia-treated Ni nanoparticles coated with PZT, compared with that of the non-treated ones, was improved by about 66 ℃. The PZT shell layer prepared by in-situ reaction can greatly reduce the dielectric constant and improve the natural resonance loss at high frequency, so as to obtain the optimal impedance matching performance of the electromagnetic wave transmission.
文摘The perovskite-type nanocrystal La0.8Sr0.2FeO3 was prepared using a sol-gel auto-combustion method with citric acid as the chelating agent. The metal ions coordination compound, obtained from nitrate and citrate, underwent an auto-combustion process and voluminous ashes formed when calcining the complex in the air. Some analytical methods, which consisted of FT-IR, XRD, TEM and wave-guide, were used to characterize the gel and the final products. It was shown that metal ions and carboxyl were combined to form a homogeneous organic complex base salts in the process of gelation. The nanocrystalline had dielectric loss in the microwave frequency range of measurement.
基金the University Natural Science Fund of Jiangsu Province, China (No. 10KJB430008)the Advanced Project of the General Reserve Department of PLA for the financial support
文摘Ba 1 x Dy x Co 2 Fe 16 O 27 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) was prepared by the solid-state method. The phase structure was studied using powder X-ray diffraction (XRD), the electromagnetic properties were measured, and the reflection loss of Dy 3+ -doped ferrite material was calculated using electromagnetic parameters by the transmission line theory. All XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x ≤ 0.15. The values of ε ′ and ε ″ increased slightly with Dy 3+ ions doping. The values of μ″ and μ′ were improved with Dy 3+ doping, exhibiting excellent microwave magnetic performance. The reasons have also been discussed using the electromagnetic theory. Dy substitution could increase microwave-absorbing performance and broaden frequency band (reflection loss (RL) -10 dB), and the absorbing peak shifted to high-frequency position. When x = 0.2, ferrite layer exhibited the most excellent microwave-absorbing performance at a thin matching thickness of 1.5 mm. The peak value of RL was around -15 dB, and the frequency band (RL -10 dB) was about 7 GHz (from 8 to 15 GHz).
基金Project(CX201627) supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China
文摘100%green carbon foam from the fibrous fruits of Platanus Orientalis-L(Plane)along with the tar oil as binder has been prepared using a powder molding technique.The objective was to develop a porous monolithic carbon from biomaterials with a considerable strength necessary for various physical,thermal and electromagnetic shielding applications.Fast carbonization was carried out at1000°C under the cover of Plane tree pyrolyzed seeds without using any external protective gas.For comparative analysis,some samples were mixed with5%(mass fraction)iron chloride during the molding process.Iron chloride being a graphitization catalyst and activating agent helped in increasing the specific surface area from88to294m2/g with a25%decrease in flexural strength.Thermal stability was improved due to the incorporation of more graphitic phases in the sample resulting in a little higher thermal conductivity from0.22to0.67W/(m·K).The catalytic carbon foam exhibited shielding effectiveness of more than20dB over the X-band frequency.Absorption was dominant with only8.26%?10.33%reflectance,indicating an absorption dominant shielding mechanism.The new material is quite suitable for high temperature thermal insulation being lightweight,highly porous with interconnected porous morphology most of which is preserved from the original biomaterial.
基金The authors thank the Natural Science Foundation of Liaoning, China under grant No.2040189. Authors express their gratitude to the Institute of Metal Research, Chinese Academy of Sciences.
文摘Nanocrystalline nickel zinc ferrite powders (Ni=Zn1-xFe2O4, A for x=0, B for x=0.2, C for x=0.5, D for x= 0.8 and E for x= 1) were synthesized by polyacrylamide gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and wave-guide were used to characterize the composition. The XRD results show that the dried gel powders are amorphous, and the characteristic peaks of the spinel Ni0.5Zn0.5Fe2O4 appear after the gel is calcined at 400℃ for 1 h. When the calcining temperatures are 600 and 800℃, the average grain sizes are identified by TEM to be 10 and 30 nm, respectively. The NixZn1-xFe2O4 powders have both dielectric loss and magnetic loss in the frequency range of 8.2-11.0GHz. With the increase of Ni^2+ ions content, the dielectric parameters (ε′) and permeability (u′) of the NixZn1-xFe2O4 powders decrease while the dielectric loss (ε″), magnetic loss (u″) and the reflection loss increase.
基金the Natural Science Foundation of Liaoning,China under grant No.2040189.
文摘Nanocrystalline Co0.5Zn0.5Fe2O4 ferrite was synthesized by polyacrylamide gel method. The electromagnetic and microwave absorption properties of the ferrite were investigated. The results indicated that calcining temperature of the ferrite had a significant influence on the effective properties of the ferrite. When the calcining temperature was 500, 600 and 700℃, the average size of particles was 10, 30 and 80 nm, respectively. The dielectric loss (ε″) and magnetic loss (μ″) of the ferrite was around 0.65 and 0.29 at 8.2 GHz, respectively. Microwave absorption properties of the ferrites were simultaneously influenced due to the strong correlation between reflection loss and electromagnetic parameters of the ferrite.
基金General Armament Department of the Chinese People's Liberation Army (42001080204)the Natural Science Foundation of Liaoning ,China (2040189)
文摘Nanocrystalline nickel ferrites with substitution of Fe3+ by rare-earth La3+, according to the formula NiLaxFe2-xO4 (with x=0, 0.05, 0.1 and 0.15), were prepared by polyacrylamide gel method. Influences of the amount of La3+ substitution on the structure and electromagnetic properties of NiLaxFe2-xO4 compounds were systematically investigated by DSC-TG, XRD, TEM and wave-guide method. XRD results indicated that the pure spinel-type crystal structure of the NiLaxFe2-xO4 (x=0 and 0.05) was obtained at 500 ℃. TEM results showed that the average particle sizes of NiFe2O4 and NiLa0.1Fe1.9O4 particles were about 10 and 15 nm, respectively. The complex permittivity and complex permeability was measured in the frequency range of 8.2~12.4 GHz. The results revealed that the nanocrystalline NiLaxFe2-xO4 had both dielectric loss and magnetic loss in the frequency range of 8.2~12.4 GHz. The tgδε and tgδm of NiLaxFe2-xO4 (with x=0 and 0.05) decreased with the increase of La3+ ions content, and some strong resonance peaks of the tgδε and tgδm of NiLaxFe2-xO4 (with x=0.1 and 0.15) appeared because of the secondary phases (LaFeO3) and more lattice defects.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2005A000200)the Xi’an Applied Materials Innovation Fund, China (Grant No XA-AM-200712)the Innovative Experiment Program for Chinese Students (Grant No State 200721)
文摘Through hydrothermal process, the chrysanthemum-like ZnO particles are prepared with zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) used as main resources under the different concentrations of surfactant polyacrylamide (PAM). The microstructure, morphology and the electromagnetic properties of the as-prepared products are characterized by high-resolution transmission electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM) and microwave vector network analyzer, respectively. The experimental results indicate that the as-prepared products are ZnO single crystalline with hexagona wurtzite structure, that the values of slenderness ratio Ld are different in different PAM concentrations, and that the good magnetic loss property is found in the ZnO products, and the average magnetic loss tangent tan δu increases with PAM concentration increasing, while the dielectric loss tangent tan ~e decreases.
文摘Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-aSsorption properties. The morphology, heat-resistance, electromagnetic properties and microwave absorption of raw-CIPs and silica-coated CIPs are investigated using a scanning electron microscope, an energy dispersive spectrometer, a thermal-gravimetric analyzer, and a network analyzer. The results show that the heat-resistance of silica-coated CIPs is better than that of raw CIFs. The reflection losses exceeding -lOdB of silica-coated CIPs are obtained in the frequency range 9.5-12.4 GHz for the absorber thickness of 2.3 mm, and the same reflection losses of uncoated CIPs reach the data in the lower frequency range for the same thickness. The enhanced microwave absorption of silica-coated CIPs can be ascribed to the combination of proper electromagnetic impedance match and the decrease of dielectric permittivity.
基金Project supported by the National Natural Science Foundation of China (Grant No. 90716019)
文摘A microwave thruster system that can convert microwave power directly to thrust without a gas propellant is devel-oped. In the system, a cylindrical tapered resonance cavity and a magnetron microwave source are used respectively as the thruster cavity and the energy source to generate the electromagnetic wave. The wave is radiated into and then reflected from the cavity to form a pure standing wave with non-uniform electromagnetic pressure distribution. Consequently, a net electromagnetic thrust exerted on the axis of the thruster cavity appears, which is demonstrated through theoretical calcula- tion based on the electromagnetic theory. The net electromagnetic thrust is also experimentally measured in the range from 70 mN to 720 mN when the microwave output power is from 80 W to 2500 W.
基金Project supported by the National Natural Science Foundation of China (Grant No 50671026)
文摘Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Energy x-ray dispersive spectrometry and high- resolution images show that the granular composites have a classical core/shell structure with an MnO2 superficial layer, no more than 10 nm in thickness. The hysteresis measurements indicate that these submicron-size Ni composite powders have small remanence and moderate coercivity. The electromagnetic properties of the powders measured by a vector network analyzer in a frequency range of 2-18 GHz are also reported in detail.
基金supported by the National Natural Science Foundation of China (Grant No. 60976069)the Natural Science Foundation of Shaanxi Province,China (Grant No. 2010JM6008)the Xi’an Scientific and Technological Project,China (Grant No. CXY1008)
文摘Chrysanthemum-like ZnO nanowire clusters with different Mn-doping concentrations are prepared by a hydrothermal process. The microstructnre, morphology and electromagnetic properties are characterized by x-ray diffractometer high-resolution transmission electron microscopy (HRTEM), a field emission environment scanning electron microscope (FEESEM) and a microwave vector network analyser respectively. The experimental results indicate that the as- prepared products are Mn-doped ZnO single crystalline with a hexagonal wurtzite structure, that the growth habit changes due to Mn-doping and that a good magnetic loss property is found in the Mn-doped ZnO products, and the average magnetic loss tangent tandm is up to 0.170099 for 3% Mn-doping, while the dielectric loss tangent tande is weakened, owing to the fact that ions Mn2+ enter the crystal lattice of ZnO.
基金supports come from the National Natural Science Foundation of China(Nos.52373280,52177014,51977009,and 12074095)the Heilongjiang Provincial Science Foundation for Distinguished Young Scholars(No.JQ2022A002)the 2020 Central Government’s plan to support the Talent Training Project of the Reform and Development Fund of Local Universities(No.2020YQ02).
文摘Currently,as the electromagnetic(EM)environment becomes increasingly complex,single-function EM materials can hardly resist the increasing electromagnetic interference(EMI),and there is an urgent need to develop multifunctional EM materials.In this work,multifunctional WSe_(2)/Co_(3)C was prepared by simple hydrothermal methods.Its dielectric performance and EM response were investigated.Efficient absorption,shielding performance,and energy conversion devices were customized.By tailoring the loading content,WSe_(2)/Co_(3)C can switch between EM absorption and EMI shielding.The maximum shielding effectiveness(SE)of WSe_(2)/Co_(3)C reached 36 dB,and high reflection loss(RL)of-60.28 dB and wide effective absorption bandwidth(EAB)of 6.16 GHz can be obtained at low thickness.The multiple EM attenuation mechanisms brought by the combination of two-dimensional(2D)WSe_(2) and magnetic Co_(3)C are considered to be the main reason for the enhanced EM attenuation ability.The WSe_(2)/Co_(3)C composite provides a viable candidate for developing multifunctional EM materials in 2–18 GHz.
文摘The SrFe12O19@carbonyl iron(CI) core–shell composites used in microwave absorption are prepared by the metal–organic chemical vapor deposition(MOCVD). The x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, and vector network analyzer are used to characterize the structural, electromagnetic, and absorption properties of the composites. The results show that the SrFe12O19@CI composites with a core–shell structure could be successfully prepared under the condition: deposition temperatures above 180℃, deposition time 30 min, and gas flow rate 30 m L/min.The electromagnetic properties of the composites change significantly, and their absorption capacities are improved. Of the obtained samples, those samples prepared at a deposition temperature of 180℃ exhibit the best absorption performance.The reflection loss of SrFe12O19@CI(180℃) with 1.5 mm–2.5 mm in thickness is less than-10 dB in a frequency range of 8 GHz–18 GHz, which covers the whole X band and Ku band.
基金the National Defence Fundamental Research Project and the Doctor Innovation Fund of NJUT(BSCX200603)
文摘Barium hexaferrites doped with Er3+, Ba1-xErxFe12O19, x=0.0, 0.01, 0.02, 0.04, 0.06, were prepared by the conventional ceramic technology. The structure and electromagnetic properties of the calcined samples were studied using powder X-ray diffraction (XRD) and network analyzer (Agilent 8722ET). All the XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x is below 0.02. The lattice parameters of ferrites doped with Er3+ decreased, indicating that the substitution of Er3+ occurs on Ba2+ basis site and results in a contract of the crystal cell. The microwave electromagnetic properties of the samples have been studied at the frequency range from 2 to 18 GHz. It was shown that ε′ increased slightly, and the maximum of ε″ appeared at low frequency position with Er3+ doping. μ″ and μ′ were improved significantly when x=0.01, and the maxima are 2 and 1.7, respectively. The reasons were also discussed using electromagnetic theory.