The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulat...The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulation result agrees with the principles of uniform pressure electromagnetic actuator.The reason for coil failure was proposed.Then the magnetic forces on the sheet were input into an explicit finite element software ANSYS/LS-DYNA to analyze the deformation law of the sheet.展开更多
The electromagnetic free bulging experiment and the coupled-field numerical simulation of the EMF process were carried out to determine the possibility to improve the formability of magnesium alloy AZ31 sheets(1 mm th...The electromagnetic free bulging experiment and the coupled-field numerical simulation of the EMF process were carried out to determine the possibility to improve the formability of magnesium alloy AZ31 sheets(1 mm thick)at room temperature.Formability data were examined using strain measurements.The numerical simulation for the electromagnetic sheet free bulging is performed by means of ANSYS FEA software.Compared with quasi-static FLD results,increase in the major and minor principal strains of approximately 87%and 39%were achieved,respectively.The effects of various process parameters on electromagnetic bulging of AZ31 magnesium alloy sheets were evaluated. Three-dimensional(3D)FE model is established to predict the electromagnetic bulging of the sheet.The simulation results agreed well with experimental observations.展开更多
基金Project (50875093) supported by the National Natural Science Foundation of China
文摘The distribution of magnetic forces and current on sheet and coil was analyzed in detail according to the structural parameter of the coil which was invalid.The result shows that the current direction based on simulation result agrees with the principles of uniform pressure electromagnetic actuator.The reason for coil failure was proposed.Then the magnetic forces on the sheet were input into an explicit finite element software ANSYS/LS-DYNA to analyze the deformation law of the sheet.
基金Item Sponsored by National Basic Research Program of China[973 Program][2011CB012805]
文摘The electromagnetic free bulging experiment and the coupled-field numerical simulation of the EMF process were carried out to determine the possibility to improve the formability of magnesium alloy AZ31 sheets(1 mm thick)at room temperature.Formability data were examined using strain measurements.The numerical simulation for the electromagnetic sheet free bulging is performed by means of ANSYS FEA software.Compared with quasi-static FLD results,increase in the major and minor principal strains of approximately 87%and 39%were achieved,respectively.The effects of various process parameters on electromagnetic bulging of AZ31 magnesium alloy sheets were evaluated. Three-dimensional(3D)FE model is established to predict the electromagnetic bulging of the sheet.The simulation results agreed well with experimental observations.