Mortar元法(mortar element method,MEM)是一种新型区域分解算法,它允许将求解区域分解为多个子域,在各个区域以最适合子域特征的方式离散。在各个区域的交界面上,边界节点不要求逐点匹配,而是通过建立加权积分形式的Mortar条件使得交...Mortar元法(mortar element method,MEM)是一种新型区域分解算法,它允许将求解区域分解为多个子域,在各个区域以最适合子域特征的方式离散。在各个区域的交界面上,边界节点不要求逐点匹配,而是通过建立加权积分形式的Mortar条件使得交界面上的传递条件在分布意义上满足。Mortar有限元法(mortar finite element method,MFEM)将MEM和有限元法(finite element method,FEM)相结合,在各区域中分别使用FEM网格离散,区域的交界面上通过施加Mortar条件实现区域间的自由度连续。该文阐述了非重叠Mortar有限单元法(non-overlapping MFEM,NO-MFEM)的基本原理,介绍了NO-MFEM的程序实现过程,使用NO-MFEM对2维静磁场问题和3维静电场问题进行了计算,并与FEM模型结果进行对比,验证了该文方法的有效性。将NO-MFEM应用于电磁分析,丰富了电磁场数值计算理论,为运动涡流问题和大规模问题的分析提供了新的选择。展开更多
文摘Mortar元法(mortar element method,MEM)是一种新型区域分解算法,它允许将求解区域分解为多个子域,在各个区域以最适合子域特征的方式离散。在各个区域的交界面上,边界节点不要求逐点匹配,而是通过建立加权积分形式的Mortar条件使得交界面上的传递条件在分布意义上满足。Mortar有限元法(mortar finite element method,MFEM)将MEM和有限元法(finite element method,FEM)相结合,在各区域中分别使用FEM网格离散,区域的交界面上通过施加Mortar条件实现区域间的自由度连续。该文阐述了非重叠Mortar有限单元法(non-overlapping MFEM,NO-MFEM)的基本原理,介绍了NO-MFEM的程序实现过程,使用NO-MFEM对2维静磁场问题和3维静电场问题进行了计算,并与FEM模型结果进行对比,验证了该文方法的有效性。将NO-MFEM应用于电磁分析,丰富了电磁场数值计算理论,为运动涡流问题和大规模问题的分析提供了新的选择。