期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Simulation Analysis of Electromechanical Coupling for Unmanned Aerial Vehicle Cabin Door System
1
作者 Bangjian Wang Xiaohang Hu Hong Nie 《World Journal of Engineering and Technology》 2023年第4期1012-1018,共7页
In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s ... In order to study the dynamic response of the unmanned aerial vehicle cabin door opening and closing system under impact load conditions, considering the flexible treatment of mechanical components, and the system’s motion with different stiffness of energy-absorbing components, a rigid-flexible coupling model of the cabin door actuation system was established in LMS. Virtual. Motion. In Amesim, a control model of the motor was created. Through the Motion-Amesim co-simulation module, the dynamic module of the system was combined with the motor control module to complete the electromechanical coupling simulation and analyze the results. . 展开更多
关键词 Unmanned Aircraft Cabin Door electromechanical coupling Virtual Prototype Dynamic Characteristics
下载PDF
Characteristic of Torsional Vibration of Mill Main Drive Excited by Electromechanical Coupling 被引量:8
2
作者 ZHANG Yifang YAN Xiaoqiang LIN Qihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期180-187,共8页
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec... In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system. 展开更多
关键词 rolling mill vibration current harmonic speed oscillation electromechanical coupling vibration characteristic
下载PDF
Dynamic Optimization Method on Electromechanical Coupling System by Exponential Inertia Weight Particle Swarm Algorithm 被引量:4
3
作者 LI Qiang WU Jianxin SUN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期602-607,共6页
Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design para... Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments. 展开更多
关键词 particle swarm algorithm electromechanical coupling system dynamic optimization
下载PDF
Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback 被引量:3
4
作者 刘爽 赵双双 +1 位作者 王兆龙 李海滨 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期345-353,共9页
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of t... The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results. 展开更多
关键词 electromechanical coupling time delay Hopf bifurcation STABILITY
下载PDF
CHARACTERISTICS OF ELECTROMECHANICAL COUPLING SELF-SYNCHRONIZATION OF A MULTI-MOTOR VIBRATION TRANSMISSION SYSTEM 被引量:8
5
作者 Xiong Wanli,Duan Zhishan (School of Mechanical and Electrical Engineering, Xi’ an University of Architecture and Technology) Wen Bangchun (Northeastern University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第3期275-278,共4页
Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero... Multi-motor vibratory transmission systems have been wide used in large vibratory machines, and four-motor linear vibratory machine is one typical equipment of them. Under non-forcible synchronization condition zero-phase synchronization of the machine is non-stationary and it-phase synchronization is stable. Under half-forcible synchronization condition in which only one motor is controlled being synchronous to another, only lag synchronization near zero-phase synchronization can be realized. Both of the characteristics have never been revealed with classical theory quantitatively. The problem is solved by means of establishing an electromechanical coupling mathematical model of the system and numerical analysis of the starting processes. 展开更多
关键词 Vibratory transmission electromechanical coupling Self-synchronization
下载PDF
Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system 被引量:1
6
作者 刘爽 赵双双 +1 位作者 孙宝平 张文明 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期271-277,共7页
Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electro... Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results. 展开更多
关键词 relative rotation electromechanical coupling Hopf bifurcation CHAOS
下载PDF
Surface Electromechanical Coupling on DLC Film with Conductive Atomic Force Microscope 被引量:1
7
作者 朱守星 丁建宁 +3 位作者 范真 李长生 蔡兰 杨继昌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2004年第3期2342-2345,共4页
Diamond-like carbon (DLC) film composed of microscopically insulation but microscopically a mixture of conducting (sp2) and insulating (sp3) phases was discussed on the local modification with a conductive atomic forc... Diamond-like carbon (DLC) film composed of microscopically insulation but microscopically a mixture of conducting (sp2) and insulating (sp3) phases was discussed on the local modification with a conductive atomic force microscope (C-APM). Especially, a topographic change was observed when a direct current (DC) bias-voltage was applied to the DLC film. Experimental results show that a nanoscale pit on DLC surface was formed when applying a positive 25 V on DLC film. According to the interacting force between CoCr-coated microelectronic scanning probe (MESP) tip and DLC surface, as well as the Sondheimer oscillation theory, the 'scalewing effect' of the pit was explained. Electromechanical coupling on DLC film suggested that the depth of pits increased with an increase of load applied to surface when the cantilever-deflected signal was less than a certain threshold voltage. 展开更多
关键词 atomic force microscope diamond-like carbon surface modification electromechanical coupling
下载PDF
Special Issue on Electromechanical Coupling Design for Electronic Equipment 被引量:1
8
作者 Bao Yan DUAN Jian Rong TAN 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期495-496,共2页
With the development of electronic equipment to high accuracy, high density, high frequency, and atrocious ser- vice environment, the functional surface in this type of equipment has increasingly serious problems,
关键词 In Special Issue on electromechanical coupling Design for Electronic Equipment DESIGN
下载PDF
ELECTROMECHANICAL COUPLING MODEL AND ANALYSIS OF TRANSIENT BEHAVIOR FOR INERTIAL RECIPROCATION MACHINES
9
作者 胡继云 殷学纲 +1 位作者 于翠萍 ZHANG Ru-qing 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第11期1499-1505,共7页
The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical mode... The dynamical equations for a inertial reciprocating machine excited by two rotating eccentric weights were built by the matrix methodology for establishing dynamical equations of discrete systems. A mathematical model of electromechanical coupling system for the machine was formed by combining the dynamical equations with the state equations of the two motors. The computer simulation to the model was performed for several values of the damping coefficient or the motor power, respectively. The substance of transient behavior of the machine is unveiled by analyzing the results of the computer simulation, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior and engineering design of the equipment. 展开更多
关键词 inertial reciprocating machine electromechanical coupling matrix method transient behavior
下载PDF
CHARACTERISTICS OF STRENGTH CONTROL OF ADAPTIVE STRUCTURE WITH ELECTROMECHANICAL COUPLING
10
作者 Sui Yunkang Shao jianyi 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第1期49-61,共13页
Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of ... Based on the programming method, an electromechanical coupling adaptive statically indeterminate truss structure is controlled for increasing its load capacity. Several main parameters during the process of design of the adaptive structure are selected for a study of its characteristic during the control stage. The curves of each parameter for the effect of control results are plotted and corresponding conclusions are drawn. Thus, the theoretical basis is presented for optimal design, manufacture and control of the adaptive structure. 展开更多
关键词 adaptive structure strength control characteristic research electromechanical coupling selection of parameters
下载PDF
Nonlinear modal electromechanical coupling factor for piezoelectric structures containing nonlinearities 被引量:1
11
作者 Yaguang WU Yu FAN Lin LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第2期100-110,共11页
Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is a... Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is also an important tool to guide the piezoelectric damping design of linear structures.Advanced aircraft often fly in maneuvers,and the variable working conditions induce drastic changes in the load level on structures.Geometric and contact nonlinearities of thin-walled structures and joint structures are often activated.To achieve a good vibration reduction effect covering all working conditions,one cannot directly use linear electromechanical coupling theory to instruct the piezoelectric damping design for nonlinear structures.Therefore,this paper defines the Nonlinear Modal Electromechanical Coupling Factor(NMEMCF)and proposes the corresponding numerical method for the first time to quantitatively evaluate the electromechanical coupling capability of nonlinear piezoelectric structures.Three candidate definitions of the NMEMCF are given,including two frequency definitions and one energy definition.The energy definition is the most promising one.It is not only applicable to both conservative and dissipative nonlinear structures but also compatible with the linear MEMCF.In addition,based on the energy formula,the NMEMCF can be obtained by only performing one nonlinear modal analysis in the open-circuit state.The analytical findings and the numerical tool are validated against two piezoelectric structures with different types of nonlinearities.A strong correlation among the NMEMCF,geometric parameters,and energy dissipation is observed.The results confirm that the proposed NMEMCF captures the physics of the electromechanical coupling phenomenon associated with nonlinear piezoelectric structures and can be used as an essential design indicator of piezoelectric damping,especially for variable working conditions. 展开更多
关键词 Modal electromechanical coupling factor Multiharmonic balance method Nonlinear normal modes Piezoelectric damping Vibration control
原文传递
Electromechanical coupling properties of a self-powered vibration sensing device for near-surface observation tower monitoring 被引量:2
12
作者 MU JiLiang HE HuiCheng +7 位作者 MU JinBiao HE Jian SONG JinSha HAN XiaoTao FENG ChengPeng ZOU Jie YU JunBin CHOU XiuJian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第7期1545-1557,共13页
The wind-induced vibration of a remote sensing tower is the key factor affecting the stability of image sensing and structural reliability. Monitoring the vibration of a long-time unattended tower is critical to its p... The wind-induced vibration of a remote sensing tower is the key factor affecting the stability of image sensing and structural reliability. Monitoring the vibration of a long-time unattended tower is critical to its proper operation. Currently, most monitoring devices are supplied with wired power or battery, significantly limiting their practical applications in remote areas. In this paper,a self-powered vibration sensing device based on hybrid electromechanical conversion mechanisms is proposed. The device depends on a cylindrical magnetic levitation structure sensitive to ambient vibration for transferring mechanical energy and is taken as a dual-functional heterogeneous integrated system comprising electromagnetic, piezoelectric, and triboelectric generators. When the device vibrates under environmental force driving, the suspension magnet reciprocates vertically and generates induced electromagnetic energy, which is used to power the device. Moreover, the triboelectric and piezoelectric voltages,respectively originating from magnet impact on two separation friction materials and magnetic field repulsion-induced strain deformation of a piezoelectric sheet, are used as the synergistic sensing signals. To improve the output energy, a set of dualsegmented annular coils is designed in an electromagnetic generator, which greatly avoids the obstructive effect of the suspended magnet on the magnetic flux change at its end. Compared with a whole isochoric coil, it increases the output voltage by 78.3%.For the triboelectric sensing module, a silicone film with a large specific surface area is fabricated via 3D modification, which improves the output voltage by 29.4%. Furthermore, a pair of piezoelectric sensing modules is set to improve the accuracy of comparative sensing data. The experimental measurement shows that the device maintains a high sensitivity of 6.711 V(m s;);and excellent linearity of 0.991 in the range of 0–14 m s;. This work provides a practical strategy for the vibration monitoring of remote sensing towers and exhibits attractive potential in early warning and data analysis. 展开更多
关键词 remote sensing tower electromechanical coupling synergistic sensing magnetic levitation vibration online monitoring
原文传递
Early Changes in Atrial Electromechanical Coupling in Patients with Hypertension: Assessment by Tissue Doppler Imaging 被引量:2
13
作者 Burcak Kilickiran Avci Oyku Gulmez +1 位作者 Guclu Donmez Seckin Pehlivanoglu 《Chinese Medical Journal》 SCIE CAS CSCD 2016年第11期1311-1315,共5页
Background: Hypertension (HT) is associated with atrial electrophysiological abnormalities. Echocardiographic pulsed wave tissue Doppler imaging (TDI) is one of the noninvasive methods for evaluation of atrial el... Background: Hypertension (HT) is associated with atrial electrophysiological abnormalities. Echocardiographic pulsed wave tissue Doppler imaging (TDI) is one of the noninvasive methods for evaluation of atrial electromechanical properties. The aims of our study were to investigate the early changes in atrial electromechanical conduction in patients with HT and to assess the parameters that affect atrial electromechanical conduction. Methods: Seventy-six patients with HT (41 males, mean age 52.6 i 9.0 years) and 41 controls (22 males, mean age 49.8 ± 7.9 years) were included in the study. Atrial electromechanical coupling at the right (PRA), left (PLA), interatrial septum (PIS) were measured with TDI. Intra- (right: PIS-PRA, left: PLA-PIS) and inter-atrial (PLA-PRA) electromechanical delays were calculated. Maximum P-wave duration (Pmax) was calculated from 12-lead electrocardiogram. Results: Atrial electromechanical coupling at PLA (76.6 ± 14.1 ms vs. 82.9 ±15.8 ms, P - 0.036), left intra-atrial (10.9 ±5.0 ms vs. 14.0 ± 9.7 ms, P = 0.023), right intra-atrial (10.6 ± 7.8 ms vs. 14.5 ± 10.1 ms, P= 0.035), and interatrial electromechanical (21.4± 9.8 ms vs. 28.3 ± 12.7 ms, P = 0.003) delays were significantly longer in patients with HT. The linear regression analysis showed that left ventricular (LV) mass index and Pmax were significantly associated with PLA (P = 0.001 and P = 0.002, respectively), and the LV mass index was the only related factor for interatrial delay (1~ = 0.001). Conclusions: Intra- and interatrial electromechanical delay, PLA were significantly prolonged in hypertensive patients. LV mass index and Pmax were significantly associated with PLA, and the LV mass index was the only related factor for interatrial delay. The atrial TDI can be a valuable method to assess the early changes of atrial electromechanical conduction properties in those patients. 展开更多
关键词 Atrial electromechanical coupling HYPERTENSION Tissue Doppler Imaging
原文传递
Effective electromechanical coupling coefficient of high-overtone bulk acoustic resonator 被引量:2
14
作者 LI Jian WANG Chenghao LIU Mengwei 《Chinese Journal of Acoustics》 CSCD 2017年第1期1-17,共17页
A high-overtone bulk acoustic resonator (HBAR) is composed of a substrate, a piezoelectric film and upper and lower electrodes, the influences of their structure parameter (thickness) and performance parameter (c... A high-overtone bulk acoustic resonator (HBAR) is composed of a substrate, a piezoelectric film and upper and lower electrodes, the influences of their structure parameter (thickness) and performance parameter (characteristic impedance) on effective electromechani- cal coupling coefficient K^2eff are investigated systematically. The relationship between K^2eff and these parameters is obtained by a lumped parameter equivalent circuit instead of distributed parameter equivalent circuit near the resonant frequency, and K^2eff at the resonance frequency closest to the given frequency is analyzed. The results show that K^2eff declines rapidly and oscillatorily with the continuous increase of the substrate thickness when the piezoelectric film thickness is fixed, and decreases inversely proportion to the thickness when the substrate thick-ness is greater than a certain value. With the ratio of the characteristic impedance of the substrate to the piezoelectric layer increasing, the maximum of K^2eff obtained from the vari- ation curve of K^2eff with the continuous increase of the piezoelectric film thickness decreases rapidly before reaching the minimum value, and later increases slowly. Fused silica with low impedance is appropriate as the substrate of HBAR to get a larger K^2eff. Compared with Al electrode, Au electrode can obtain larger K^2eff when the appropriate electrode thickness is selected. The revealed laws above mentioned provide the theoretical basis for optimizing parameters of HBAR. 展开更多
关键词 ZnO Effective electromechanical coupling coefficient of high-overtone bulk acoustic resonator high
原文传递
A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers 被引量:2
15
作者 Jun Liu Choon Chiang Foo Zhi-Qian Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第4期374-389,共16页
We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement an... We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material. 展开更多
关键词 Dielectric elastomer electromechanical coupling Implicit multi-field finite element method Eigenvalue problem
原文传递
Theoretical analysis of dynamic property for piezoelectric cantilever triple-layer benders with large piezoelectric and electromechanical coupling coefficients
16
作者 Li Jiao Gong Cheng Liang Pan +1 位作者 Qiao Sheng Pan Zhi Hua Feng 《Journal of Advanced Dielectrics》 CAS 2016年第3期17-26,共10页
Ferroelectric single crystals,such as PZN-PT,provide novel prospects in piezoelectric bending devices such as actuators,sensors or energy harvesters because of their extraordinarily large piezoelectric coefficients.Ho... Ferroelectric single crystals,such as PZN-PT,provide novel prospects in piezoelectric bending devices such as actuators,sensors or energy harvesters because of their extraordinarily large piezoelectric coefficients.However,large errors may occur in some analyses on electromechanical behaviors using the conventional models.We find the bending rigidity of piezoelectric composited bender is affected not only by thickness,width and the modulus of elasticity of the different layers but also electromechanical coupling coefficients(EMCCs)of the piezoelectric material and the larger EMCCs mean more marked effect.This paper focuses on the derivation of the applied input excitation and output response characteristics in the circular frequency domain for piezoelectric cantilever triple-layer benders(PCTBs),taking into account the secondary piezoelectric effect.Analytic dynamic descriptions of such actuators and transducers are obtained.Based on the presented models dynamic features of PCTB composed of PZN-8%PT are calculated,and numerical results coincide with simulations using the finite element method(FEM). 展开更多
关键词 Dynamic property electromechanical coupling(EMC) piezoelectric cantilever
原文传递
Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane
17
作者 王鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期409-415,共7页
Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysi... Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron. 展开更多
关键词 Hamilton’s principle Noether theorem fractional derivative multiscale electromechanical coupling neuron membrane
下载PDF
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system
18
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
下载PDF
Analysis of the electromechanical behavior of ferroelectric ceramics based on a nonlinear finite element model 被引量:3
19
作者 Daining Fang Faxin Li +1 位作者 A. K. Soh Tieqi Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期294-304,共11页
A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation in... A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics. 展开更多
关键词 Ferroelectric material Domain switching Finite element method Nonlinear electromechanical coupling Crack and fracture
下载PDF
BIFURCATION OF THE ELECTROMECHANICALLY COUPLED SUBSYNCHRONOUS TORSIONAL OSCILLATING SYSTEM WITH HYSTERETIC BEHAVIOR 被引量:2
20
作者 徐健学 傅卫平 张新华 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第1期81-90,共10页
In subsynchronous resonance (SSR) systems where shaft systems of turbine-generator sets are coupling with electric networks, Hopf bifurcation will occur under certain conditions. Some singularity phenomena may generat... In subsynchronous resonance (SSR) systems where shaft systems of turbine-generator sets are coupling with electric networks, Hopf bifurcation will occur under certain conditions. Some singularity phenomena may generate when the hysteretic behavior of couplings in the shaft systems is considered. In this paper, the intrinsic multiple-scale harmonic balance method is extended to the nonlinear autonomous system with the non-analytic property, and the dynamic complexities of the system near the Hopf bifurcation point are analyzed. 展开更多
关键词 HYSTERESIS Hopf bifurcation intrinsic multiple-scale harmonic balance method electromechanical coupling subsynchronous resonance
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部