The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition...The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition of hand movement is realized according to the surface electromyography (sEMG). A collector is set on the forearm. The sEMG signal is recorded and conveyed to a PC terminal by using wireless Zigbee. An automatic algorithm is developed in order to extract the characteristics of sEMG, recognize the waving movements, and transmit to document control command. The developed human-computer interaction technique can be used as a new gallery for teaching, as well as an assistant tool for disabled person.展开更多
应用非线性动力学的方法 ,研究最大和 6 0 % MVC强度肱二头肌静态疲劳负荷及其恢复期表面肌电信号复杂度变化规律 ,探讨肌肉疲劳过程中 s EMG信号变化的可能原因和机制。结论 :s EMG信号 L em pel- Ziv复杂度反映了神经活动策略和神经...应用非线性动力学的方法 ,研究最大和 6 0 % MVC强度肱二头肌静态疲劳负荷及其恢复期表面肌电信号复杂度变化规律 ,探讨肌肉疲劳过程中 s EMG信号变化的可能原因和机制。结论 :s EMG信号 L em pel- Ziv复杂度反映了神经活动策略和神经肌肉功能状态的变化。运动负荷诱发肱二头肌静态疲劳过程中 s EMG信号复杂度随运动负荷时间延长而减小 ,恢复期 s EMG信号复杂度和 MVC均随恢复时间的延长以相似的模式快速恢复 ,提示 ,s展开更多
文摘The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition of hand movement is realized according to the surface electromyography (sEMG). A collector is set on the forearm. The sEMG signal is recorded and conveyed to a PC terminal by using wireless Zigbee. An automatic algorithm is developed in order to extract the characteristics of sEMG, recognize the waving movements, and transmit to document control command. The developed human-computer interaction technique can be used as a new gallery for teaching, as well as an assistant tool for disabled person.
文摘应用非线性动力学的方法 ,研究最大和 6 0 % MVC强度肱二头肌静态疲劳负荷及其恢复期表面肌电信号复杂度变化规律 ,探讨肌肉疲劳过程中 s EMG信号变化的可能原因和机制。结论 :s EMG信号 L em pel- Ziv复杂度反映了神经活动策略和神经肌肉功能状态的变化。运动负荷诱发肱二头肌静态疲劳过程中 s EMG信号复杂度随运动负荷时间延长而减小 ,恢复期 s EMG信号复杂度和 MVC均随恢复时间的延长以相似的模式快速恢复 ,提示 ,s