期刊文献+
共找到126,073篇文章
< 1 2 250 >
每页显示 20 50 100
Electron G-Factor Anomaly and the Charge Thickness
1
作者 Arlen Young 《Journal of Modern Physics》 2024年第4期435-447,共13页
The electron g-factor relates the magnetic moment to the spin angular momentum. It was originally theoretically calculated to have a value of exactly 2. Experiments yielded a value of 2 plus a very small fraction, ref... The electron g-factor relates the magnetic moment to the spin angular momentum. It was originally theoretically calculated to have a value of exactly 2. Experiments yielded a value of 2 plus a very small fraction, referred to as the g-factor anomaly. This anomaly has been calculated theoretically as a power series of the fine structure constant. This document shows that the anomaly is the result of the electron charge thickness. If the thickness were to be zero, g = 2 exactly, and there would be no anomaly. As the thickness increases, the anomaly increases. An equation relating the g-factor and the surface charge thickness is presented. The thickness is calculated to be 0.23% of the electron radius. The cause of the anomaly is very clear, but why is the charge thickness greater than zero? Using the model of the interior structure of the electron previously proposed by the author, it is shown that the non-zero thickness, and thus the g-factor anomaly, are due to the proposed positive charge at the electron center and compressibility of the electron material. The author’s previous publication proposes a theory for splitting the electron into three equal charges when subjected to a strong external magnetic field. That theory is revised in this document, and the result is an error reduced to 0.4% in the polar angle where the splits occur and a reduced magnetic field required to cause the splits. 展开更多
关键词 electron G-Factor Anomaly electron Charge Thickness electron Positive Charge electron Mass Thickness electron Fractionalization Splitting the electron electron Compressibility Factor
下载PDF
Origin, Creation, and Splitting of the Electron
2
作者 Arlen Young 《Journal of Modern Physics》 2023年第12期1563-1577,共15页
The author’s earlier papers proposed a model of the electron’s internal structure comprised of both positive and negative masses and charges. Their relation to the fine structure constant a was calculated in the aut... The author’s earlier papers proposed a model of the electron’s internal structure comprised of both positive and negative masses and charges. Their relation to the fine structure constant a was calculated in the author’s previous paper. In this paper, more details of the model of the electron’s internal structure, in particular the thicknesses of its outer shell mass and charge, are calculated. Magnetostriction of the electron’s surface is generated by the electron’s spinning surface charge. It is calculated that this magnetostriction holds the electron together, counterbalancing the outward electrical and centrifugal forces. The results of these calculations enable the prediction that a sufficiently strong external magnetic field can split the electron into three equal pieces. The field strength would have to be on the order of at least 8% of the strength at the center of the electron. A model for the origin and creation of an electron from a gamma ray wave is proposed. Evidence is presented that, for certain transitions, mass might be quantized and that the quantum of mass would be 1/2a times the electron mass. 展开更多
关键词 Mass Quantization electron Fractionalization Splitting the electron electron Origin electron Creation electron Magnetostriction electron Charge Inconsistency electron Mass Inconsistency
下载PDF
A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics 被引量:1
3
作者 Qian Wang Yanyan Li +7 位作者 Yong Lin Yuping Sun Chong Bai Haorun Guo Ting Fang Gaohua Hu Yanqing Lu Desheng Kong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期120-133,共14页
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite... Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems. 展开更多
关键词 Stretchable electronics Epidermal electronics Silver nanowire Conductive nanocomposites HYDROGEL
下载PDF
Investigation on taste characteristics and sensory perception of soft-boiled chicken during oral processing based on electronic tongue and electronic nose 被引量:1
4
作者 Na Xu Xianming Zeng +3 位作者 Peng Wang Xing Chen Xinglian Xu Minyi Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期313-326,共14页
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual... The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people. 展开更多
关键词 Oral processing CHICKEN electronic tongue electronic nose
下载PDF
Tuning the electronic conductance of REH_(x)(RE=Nd,Ce,Pr)by structural deformation
5
作者 Shangshang Wang Weijin Zhang +6 位作者 Jirong Cui Shukun Liu Hong Wen Jianping Guo Teng He Hujun Cao Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期440-445,I0010,共7页
Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrim... Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrimental electron conduction preventing their application as ion conductors.Here,REH_(x)(RE=Nd,Ce,and Pr)with varied grain sizes,rich grain boundaries,and defects have been prepared by ball milling and subsequent sintering.The electronic conductivity of the ball-milled REH_(x)samples can be reduced by 2-4 orders of magnitude compared with the non-ball-milled samples.The relationship of electron conduction and miscrostructures in REH_(x)is studied and discussed based on experimental data and previously-proposed classical and quantum theories.The H-conductivity of all REH_(x)is about 10^(-4)to 10^(-3)S cm^(-1)at room temperature,showing promise for the development of H-conductors and their applications in clean energy storage and conversion. 展开更多
关键词 Hydride ion conduction electron conduction Nanosized grain Crystal defect electron scattering
下载PDF
Advances in Wireless,Batteryless,Implantable Electronics for Real‑Time,Continuous Physiological Monitoring
6
作者 Hyeonseok Kim Bruno Rigo +2 位作者 Gabriella Wong Yoon Jae Lee Woon‑Hong Yeo 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期254-302,共49页
This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co... This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses. 展开更多
关键词 Implantable electronics Biomedical systems Batteryless devices Wireless electronics Physiological signal monitoring
下载PDF
TiO_(2)Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells
7
作者 Wenhao Zhao Pengfei Guo +8 位作者 Jiahao Wu Deyou Lin Ning Jia Zhiyu Fang Chong Liu Qian Ye Jijun Zou Yuanyuan Zhou Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期1-14,共14页
Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport... Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics. 展开更多
关键词 electron transport layer p-n homojunction electron mobility Buried interface Perovskite solar cells
下载PDF
Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
8
作者 樊光琦 杨志杰 +4 位作者 孙烽豪 郑金梅 韩云天 黄明谦 刘情操 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期248-252,共5页
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la... Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process. 展开更多
关键词 nonsequential double ionization correlated electronelectron momentum distribution energy sharing of electrons orthogonally polarized two-color field laser field semiclassical ensemble models
下载PDF
Growth mechanism and characteristics of electron drift instability in Hall thruster with different propellant types
9
作者 陈龙 阚子晨 +4 位作者 高维富 段萍 陈俊宇 檀聪琦 崔作君 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期511-522,共12页
The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re... The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons. 展开更多
关键词 Hall thruster electron drift instability axial electron mobility particle-in-cell simulation
下载PDF
Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy
10
作者 王浪 李超凡 +3 位作者 RAN Maojin YUAN Manman 胡执一 LI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期877-887,共11页
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme... The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles. 展开更多
关键词 bismuth nanoparticles crystal growth transmission electron microscopy in-situ electron microscopy
下载PDF
Design of the electron cyclotron emission diagnostic on EXL-50 spherical torus
11
作者 王嵎民 谢奇峰 +10 位作者 陶仁义 张辉 薄晓坤 孙恬恬 伦秀春 陈琳 谭伟强 郭栋 邓必河 刘敏胜 the EXL-50 Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期53-60,共8页
The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D ele... The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities. 展开更多
关键词 electron cyclotron emission spherical torus(ST) EXL-50 energetic electrons
下载PDF
Analysis of the electron transfer pathway in small laccase by EPR and UV-vis spectroscopy coupled with redox titration
12
作者 Lu Yu Aokun Liu +3 位作者 Jian Kuang Ruotong Wei Zhiwen Wang Changlin Tian 《Magnetic Resonance Letters》 2024年第3期52-59,共8页
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe... Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications. 展开更多
关键词 electron paramagnetic resonance Redox titration electron transfer Reduction Potential Small laccase
下载PDF
Low-energy inelastic electron scattering from carbon monoxide:Excitation and de-excitation of the X^(1)Σ^(+),a^(3)Π,a'^(3)∑^(+),A^(1)Π,d^(3)Δ,e^(3)∑^(-),I^(1)∑^(-)and D^(1)Δelectronic states
13
作者 卫鹏宇 黄朝文 +1 位作者 程新路 张红 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期444-450,共7页
Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix me... Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy. 展开更多
关键词 electron-CO collision electronic excitation CROSS-SECTIONS R-matrix method
下载PDF
Capturing the non-equilibrium state in light–matter–free-electron interactions through ultrafast transmission electron microscopy
14
作者 汪文韬 孙帅帅 +5 位作者 李俊 郑丁国 黄思远 田焕芳 杨槐馨 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期88-101,共14页
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact... Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams. 展开更多
关键词 ultrafast transmission electron microscopy non-equilibrium structural dynamics photo-induced phase transition free-electron–photon interactions
下载PDF
Calculatons of the Electron Radius
15
作者 Ardeshir Irani 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期724-725,共2页
Equating the Rest Mass Energy of a free electron to its Rest Charge Energy we prove that the electron cannot be a dimensionless point particle because if it were dimensionless, it would contain an infinite amount of R... Equating the Rest Mass Energy of a free electron to its Rest Charge Energy we prove that the electron cannot be a dimensionless point particle because if it were dimensionless, it would contain an infinite amount of Rest Charge Energy at the location of its charge since r = 0 gives , which is clearly not possible. Since the electron has no internal structure, equating its Rest Mass Energy to its Rest Charge Energy, we calculate the electron to be a sphere of radius 4.68 × 10<sup>-</sup><sup>16</sup> meters. We calculate the Electric Field at the surface of the electron due to its charge and the Repulsive Force two electrons in proximity exert on each other. 展开更多
关键词 Rest Mass Energy Rest Charge Energy Size of an electron Electric Field Force Exerted by Two electrons
下载PDF
The Strange Relationship between the Momentum of a Photon Emitted from an Electron and the Momentum Acquired by the Electron
16
作者 Koshun Suto 《Journal of Applied Mathematics and Physics》 2024年第7期2652-2664,共13页
In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in th... In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in the state where n=0has zero rest mass energy. However, a hydrogen atom has an energy level even lower than the n=0state. This is hard to accept from the standpoint of common sense. Thus, the author has previously pointed out that an electron at the energy level where n=0has zero energy because the positive energy mec2and negative energy −mec2cancel each other out. This paper elucidates the strange relationship between the momentum of a photon emitted when a hydrogen atom is formed by an electron with such characteristics, and the momentum acquired by the electron. 展开更多
关键词 Einstein’s Energy-Momentum Relationship Energy-Momentum Relationship in a Hydrogen Atom Momentum of a Photon Momentum of a electron Negative Energy Specific to the electron Dark Matter
下载PDF
The Integration of Modern Electronic Technology and E-Commerce:the Driving Force of Innovation Development
17
作者 Yongchang Cai 《Journal of Educational Theory and Management》 2024年第2期6-10,共5页
In the 21st century,which is known as the age of information,the integration of electronic technology and e-commerce has become an irreversible trend in the field of business.This trend not only promotes the innovativ... In the 21st century,which is known as the age of information,the integration of electronic technology and e-commerce has become an irreversible trend in the field of business.This trend not only promotes the innovative development of e-commerce,but also brings unprecedented opportunities and challenges for enterprises.With the continuous development and popularization of Internet technology,more and more people choose to carry out shopping,payment and other consumption activities through e-commerce platforms,which also provides merchants with a broader market space and more sales channels.At the same time,e-commerce also brings more convenience and choice to consumers,making it easier for consumers to obtain the goods and services they need.However,the development of e-commerce has also brought some new challenges,such as how to ensure the quality of goods,how to protect consumer privacy and so on.Therefore,enterprises and government departments need to strengthen the supervision and management of e-commerce to ensure its healthy and orderly development.In general,the integration of electronic technology and e-commerce has become an important trend in today’s business field,which brings both opportunities and challenges to enterprises. 展开更多
关键词 electronic technology electronic commerce Innovation and development Driving force
下载PDF
Electron Shape Calculated for the Dual-Charge Dual-Mass Model
18
作者 Arlen Young 《Journal of Modern Physics》 CAS 2023年第3期198-207,共10页
A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. ... A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius. 展开更多
关键词 electron Shape Classical electron Model Dual-Charge Dual-Mass Model electron Radius Negative Mass electron Mass Inconsistency electron Charge Inconsistency Fine Structure Constant
下载PDF
3D‑Printed Carbon‑Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics 被引量:3
19
作者 Shaohong Shi Yuheng Jiang +5 位作者 Hao Ren Siwen Deng Jianping Sun Fangchao Cheng Jingjing Jing Yinghong Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期87-101,共15页
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni... Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics. 展开更多
关键词 3D printing Carbon-based nanoparticles Conformal electromagnetic interference shielding Integrated electronics
下载PDF
An Environment‑Tolerant Ion‑Conducting Double‑Network Composite Hydrogel for High‑Performance Flexible Electronic Devices 被引量:2
20
作者 Wenchao Zhao Haifeng Zhou +3 位作者 Wenkang Li Manlin Chen Min Zhou Long Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期352-369,共18页
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i... High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications. 展开更多
关键词 Ionic liquids Double-network hydrogels Temperature tolerance Multifunctionality Flexible electronic devices
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部