This paper summarizes melting methods of titanium and titanium alloy, such as vacuum arc melting(VAR) and electron beam cold hearth melting(EBCHM), and the related inclusions formed when using these melting methods. L...This paper summarizes melting methods of titanium and titanium alloy, such as vacuum arc melting(VAR) and electron beam cold hearth melting(EBCHM), and the related inclusions formed when using these melting methods. Low-density inclusions are resulted from contamination of air, and high-density inclusions are caused by refractory elements. The formation process of inclusions was analysed. The removal mechanism of different kinds of inclusions was specified. Low-density inclusions are removed mainly by resolving. This is a comprehensive process containing reaction diffusion. The resolving rate of high-density inclusions is so low that these inclusions are mainly removed by sedimentation. The experiments and physical models of inclusions are detailed. In various melting methods, vacuum arc melting is prominent. However, this method cannot remove inclusions effectively, which usually results in repeat melting. Electron beam cold hearth melting has the best ability of removing inclusions. These results can provide instructions to researchers of titanium and titanium alloys.展开更多
对比分析一次电子束冷床炉熔炼(EBCHM)加一次真空自耗电弧炉熔炼(VAR)和三次真空自耗电弧炉熔炼生产的φ820 mm TC17钛合金铸锭的化学成分均匀性,以及由这两种铸锭经相同工艺锻造得到的棒材的组织均匀性。结果表明,通过原材料控制和工...对比分析一次电子束冷床炉熔炼(EBCHM)加一次真空自耗电弧炉熔炼(VAR)和三次真空自耗电弧炉熔炼生产的φ820 mm TC17钛合金铸锭的化学成分均匀性,以及由这两种铸锭经相同工艺锻造得到的棒材的组织均匀性。结果表明,通过原材料控制和工艺参数设计,两种熔炼方式均可生产出化学成分均匀、杂质含量可控的大规格TC17钛合金铸锭,且EBCHM+VAR工艺在残钛回收方面具有优势;两种工艺得到的铸锭,经相同的锻造工艺可获得组织均匀的棒材,为航空转动件提供材料支撑。展开更多
基金financially supported by the National Key Research and Development Program of China(2016YFB0301200)
文摘This paper summarizes melting methods of titanium and titanium alloy, such as vacuum arc melting(VAR) and electron beam cold hearth melting(EBCHM), and the related inclusions formed when using these melting methods. Low-density inclusions are resulted from contamination of air, and high-density inclusions are caused by refractory elements. The formation process of inclusions was analysed. The removal mechanism of different kinds of inclusions was specified. Low-density inclusions are removed mainly by resolving. This is a comprehensive process containing reaction diffusion. The resolving rate of high-density inclusions is so low that these inclusions are mainly removed by sedimentation. The experiments and physical models of inclusions are detailed. In various melting methods, vacuum arc melting is prominent. However, this method cannot remove inclusions effectively, which usually results in repeat melting. Electron beam cold hearth melting has the best ability of removing inclusions. These results can provide instructions to researchers of titanium and titanium alloys.
文摘对比分析一次电子束冷床炉熔炼(EBCHM)加一次真空自耗电弧炉熔炼(VAR)和三次真空自耗电弧炉熔炼生产的φ820 mm TC17钛合金铸锭的化学成分均匀性,以及由这两种铸锭经相同工艺锻造得到的棒材的组织均匀性。结果表明,通过原材料控制和工艺参数设计,两种熔炼方式均可生产出化学成分均匀、杂质含量可控的大规格TC17钛合金铸锭,且EBCHM+VAR工艺在残钛回收方面具有优势;两种工艺得到的铸锭,经相同的锻造工艺可获得组织均匀的棒材,为航空转动件提供材料支撑。