期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
A Modification of LiMn2O4 by Ionic Conductive Agent and Electronic Conductive Agent Coating
1
作者 Xiaohui Sun Meng Wang +1 位作者 Tianming Yuan Jingkang Li 《Natural Science》 2024年第1期1-6,共6页
Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evalu... Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evaluated their effect by using spherical spinel LiMn<sub>2</sub>O<sub>4</sub> which prepared ourselves as cathode material. Then Li<sub>2</sub>SiO<sub><sub></sub>3</sub>/carbon surface coating on LiMn<sub><sub></sub>2</sub>O<sub>4</sub> (LMO/C/LSO) which Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> inside and carbon/Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> coated LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> (LMO/LSO/C) were prepared, All of materials were characterized by X-ray diffraction (XRD) and electrochemical test;spherical LiMn<sub></sub>2O<sub></sub>4 was characterized by scanning electron microscopy (SEM);and coated materials were characterized by transmission electron microscopy (TEM). While uncoated spinel LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> maintained 72% of capacity in 60 cycles by the rate of 0.2C, and LMO/LSO/C showed the best electrochemical performance, 89% of the initial capacity remained after 75 cycles at 0.2C. Furthermore, the rate performance of LMO/LSO/C also improved obviously, about 30 mAh·g<sup>-1</sup> of capacity attained at the rate of 5C, higher than LMO/C/LSO and bare LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub>. 展开更多
关键词 electronic conduction Ionic conduction LMO/LSO/C
下载PDF
A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery:Progress and prospects 被引量:1
2
作者 Hengying Xiang Nanping Deng +5 位作者 Huijuan Zhao Xiaoxiao Wang Liying Wei Meng Wang Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期523-556,共34页
Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspo... Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspots of current researches.Besides,elemental S(Se) raw materials are widely sourced and their production costs are both low,which make them considered one of the new generations of high energy density electrochemical energy storage systems with the most potential for development.However,poor conductivity of elemental S/Se and the notorious "shuttle effect" of lithium polysulfides(polyselenides) severely hinder the commercialization of Li-S/Se batteries.Thanks to the excellent electrical conductivity and strong absorption of lithium polysulfide(polyselenide) about electronically conducting polymer,some of the above thorny problems have been effectively alleviated.The review presents the fundamental studies and current development trends of common electronically conducting polymers in various components of Li-S/Se batteries,which involves polyaniline(PANI) polypyrrole(PPy),and polythiophene(PTh) with its derivatives,e.g.polyethoxythiophene(PEDOT) and poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS).Finally,the review not only summarizes the research directions and challenges facing the application of electronically conducting polymers,but also looks forward to the development prospects of them,which will provide a way for the practical use of electronically conducting polymers in Li-S/Se batteries with outstanding electrochemical properties in the short run. 展开更多
关键词 Li-S/Se batteries electronically conducting polymer Various battery components Suppressed"shuttle effect" Outstanding electrochemical properties
下载PDF
Study on Electronic Conductivity of CaO-SiO2-Al2O3-FeOx Slag System 被引量:1
3
作者 LU Xiong-gang LI Fu-shen +1 位作者 LI Li-fen CHOU Kou-chih 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2000年第1期9-13,共5页
A study on electronic conductivity of CaO-SiO2-Al2O3-FeOxslag system with Wagner polarization technique was carried out.The experimental data show that electronic conductivity is consisted of free electron conductivit... A study on electronic conductivity of CaO-SiO2-Al2O3-FeOxslag system with Wagner polarization technique was carried out.The experimental data show that electronic conductivity is consisted of free electron conductivity and electron hole conductivity and both are related to the content of Fe3+and Fe2+.Free electron conductivity is decreasing and electron hole conductivity is increasing while Fe3+changes to Fe2+.There is a maximum electronic conductivity at some ratio of ferric ions Fe3+to total ion content.Under the experimental conditions,the electronic conductivity is in the range of 10-4—10-2S/cm. 展开更多
关键词 smelt slag electron hole electronic conductivity
下载PDF
Effect of ZrO_2 (9mol% Y_2O_3) coating thickness on the electronic conductivity of Mg-PSZ oxygen sensors 被引量:1
4
作者 ChangheGao HaileiZhao QingguoLiu WeijiangWu WeihuaQiu 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期160-165,共6页
The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-fir... The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-firing at 1750°C for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated Mg- PSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4 μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarka- bly, probably due to the lower electronic conductivity of Y2O,-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2 (9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measure- ment. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this im- provement. 展开更多
关键词 oxygen sensor stabilized ZrO2 solid electrolyte COATING electronic conductivity
下载PDF
Spaced-Resolved Electron Density of Aluminum Plasma Produced by Frequency-Tripled Laser
5
作者 杨柏谦 韩申生 +5 位作者 张继彦 郑志坚 杨国洪 杨家敏 李军 汪艳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第6期3151-3154,共4页
By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obt... By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obtained by two different diagnostic methods and compared with the profiles from the theoretical simulation of hydrodynamics code MULTI1D. The results corroborate the feasibility to obtain the electron density above the critical surface by the diagnostic method based on the Stark-broadened wings in the intermediately coupled plasmas. 展开更多
关键词 laser-produced plasma stark-broadened wings electron heat conduction fluxlimited factor
下载PDF
Laser X-ray Conversion and Electron Thermal Conductivity
6
作者 王光裕 常铁强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第1期653-658,共6页
The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3w. laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electr... The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3w. laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Harm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature. 展开更多
关键词 Laser X-ray Conversion and electron Thermal Conductivity LINE THAN high
下载PDF
Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire
7
作者 M Munguía-Rodríguez Ri Betancourt-Riera +2 位作者 Re Betancourt-Riera R Riera J M Nieto Jalil 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期453-460,共8页
The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated,and expressions for the electronic states are presented.The system is model... The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated,and expressions for the electronic states are presented.The system is modeled by considering T = 0 K and also with a single parabolic conduction band,which is split into a subband system due to the confinement.The gain and differential cross-section for an electron Raman scattering process are obtained.In addition,the emission spectra for several scattering configurations are discussed,and interpretations of the singularities found in the spectra are given.The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers. 展开更多
关键词 electron cylindrical confinement conduction radius decoupling AlGaAs parabolic modeled resonant
下载PDF
Electronic Transport of Uranium Mononitride
8
作者 Barbara Szpunar Jayangani I. Ranasinghe Jerzy A. Szpunar 《Journal of Modern Physics》 2021年第10期1409-1417,共9页
We investigated the electronic heat capacity, thermal conductivity, and resistivity of UN using Quantum Espresso and EPW code. GGA, PBEsol functional was used. The calculated electronic heat coefficient was found to b... We investigated the electronic heat capacity, thermal conductivity, and resistivity of UN using Quantum Espresso and EPW code. GGA, PBEsol functional was used. The calculated electronic heat coefficient was found to be significantly reduced (0.0176 J<span style="white-space:nowrap;"><span style="white-space:nowrap;">&sdot;</span></span>mol<sup><span style="white-space:nowrap;">-</span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&sdot;</span></span>K<sup><span style="white-space:nowrap;">-</span>2</sup> versus 0.0006 J<span style="white-space:nowrap;"><span style="white-space:nowrap;">&sdot;</span></span>mol<sup><span style="white-space:nowrap;">-</span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&sdot;</span></span>K<sup><span style="white-space:nowrap;">-</span>2</sup>) when the non-local hybrid functional (B3LYP) was used. Furthermore, we calculated electrical resistivity using a very transparent Ziman’s formula for metals with the Eliashberg transport coupling function as implemented in EPW code for non-spin-polarized calculations. The number of mobile electrons in UN, as a function of temperature, was derived from the ratio of the calculated resistivity and available experimental data. The electronic thermal conductivity was evaluated from the calculated electronic resistivity via Wiedemann-Franz law with the number of mobility electrons (<em>n<sub>av</sub></em>) incorporated (averaged over the temperature range 300 K - 1000 K). Both the electronic thermal conductivity and resistivity, as calculated using newly evaluated <em>n<sub>av</sub></em>, compare well with experimental data at ~700 K, but to reproduce the observed trend as a function of temperature, the number of mobile electrons must decrease with the temperature as evaluated. 展开更多
关键词 UN electronic Thermal Conductivity electronic Structure Number of Mobility electrons Quantum ESPRESSO EPW Codes
下载PDF
Electron Transport under the Influence of Two Kinds of Friction in an Electron-Deuteron Plasma
9
作者 Mitsuaki Nagata 《Journal of Modern Physics》 2020年第11期1751-1760,共10页
We discuss an electron transport in an ideal plasma which consists of electrons and deuterons. With respect to a frictional force to suppress an unlimited increase of a drift velocity, the Boltzmann equation with the ... We discuss an electron transport in an ideal plasma which consists of electrons and deuterons. With respect to a frictional force to suppress an unlimited increase of a drift velocity, the Boltzmann equation with the Fokker-Planck collision term takes into consideration only a dynamical frictional force coming from the many-body collisions through the Coulomb force. However, we here bring forward a problem that there may be another frictional force besides the dynamical frictional force. Another frictional force was found in the weakly ionized plasma and appears only in the case where free paths (nearly straight lines in no external force field) can be defined. Then, we have inquired into the existence of physical quantities like free paths (or free times) in the field of the scattering through the Coulomb force and the existence of an effective radius of the Coulomb force of a deuteron. 展开更多
关键词 Conductivity of electrons in a Perfectly Ionized Plasma Many-Body and Two-Body Collisions Effective Radius of the Coulomb Force
下载PDF
Metal-nitrogen-doped hybrid ionic/electronic conduction triple-phase interfaces for high-performance all-solid-state lithium-sulfur batteries 被引量:1
10
作者 Hao Li Jiangping Song +3 位作者 Fanglin Wu Rui Wang Dan Liu Haolin Tang 《Nano Research》 SCIE EI CSCD 2023年第8期10956-10965,共10页
The point-to-point contact mechanism in all-solid-state Li-S batteries(ASSLSBs)is not as efficient as a liquid electrolyte which has superior mobility in the electrode,resulting in a slower reaction kinetics and inade... The point-to-point contact mechanism in all-solid-state Li-S batteries(ASSLSBs)is not as efficient as a liquid electrolyte which has superior mobility in the electrode,resulting in a slower reaction kinetics and inadequate ionic/electronic conduction network between the S(or Li_(2)S),conductive carbon,and solid-state electrolytes(SSEs)for achieving a swift(dis)charge reaction.Herein,a series of hybrid ionic/electronic conduction triple-phase interfaces with transition metal and nitrogen co-doping were designed.The graphitic ordered mesoporous carbon frameworks(TM-N-OMCs;TM=Fe,Co,Ni,and Cu)serve as hosts for Li_(2)S and Li_(6)PS_(5)Cl(LPSC)and provide abundant reaction sites on the triple interface.Results from both experimental and computational research display that the combination of Cu-N co-dopants can promote the Li-ion diffusion for rapid transformation of Li_(2)S with adequate ionic(6.73×10^(−4)S·cm^(−1))/electronic conductivities(1.77×10^(−2)S·cm^(−1))at 25℃.The as-acquired Li_(2)S/Cu-N-OMC/LPSC electrode exhibits a high reversible capacity(1147.7 mAh·g^(−1))at 0.1 C,excellent capacity retention(99.5%)after 500 cycles at 0.5 C,and high areal capacity(7.08 mAh·cm^(−2)). 展开更多
关键词 all-solid-state lithium-sulfur batteries triple-phase interfaces ordered mesoporous carbons mixed ion/electron conductivities Li_(6)PS_(5)Cl solid electrolyte
原文传递
Ni-P-SBR composite-electroless-plating enables Si anode with high conductivity and elasticity for high performance Li-ion batteries application
11
作者 Yuxiao Wang Jian Gou +3 位作者 Hongzhang Zhang Xiaofei Yang Huamin Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期59-66,I0003,共9页
Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shr... Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shrinks during the lithiation/delithiation process,further leading to low cycle stability.Efforts to mitigate the adverse effects caused by volume expansion such as robust binder matrix,Coreshell structure,etc.,inevitably affect the electronic conductivity within the electrode.Herein,a high conductivity and elasticity Si anode(Ni-P-SBR(styrene-butadiene rubber)@Si)was designed and fabricated via the Ni-P-SBR composite-electroless-plating process.In this design,the Si particles are surrounded by SBR polymer and Ni particles,where the SBR can adapt to the volume change and Ni particles can provide the electrode with high electronic conductivity.Therefore,the Ni-P-SBR@Si delivers a high initial capacity of 3470 m A h g-1and presents capacity retention of 49.4%within 200 cycles at 600 m A g-1.Additionally,a high capacity of 1153 m A h g-1can be achieved at 2000 m A g-1and can be cycled stably under bending conditions.This strategy provides feasible ideas to solve the key issues that limit the practical application of Si anodes. 展开更多
关键词 Silicon anode Volume expansion Composite-electroless-plating High elasticity High electronic conductivity
下载PDF
Synthesis and electrochemical performance of La_(2)CuO_(4)as a promising coating material for high voltage Li-rich layered oxide cathodes
12
作者 郭福亮 卢嘉泽 +4 位作者 苏美华 陈约 郑杰允 尹良 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期124-132,共9页
The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion ba... The structural transformations,oxygen releasing and side reactions with electrolytes on the surface are considered as the main causes of the performance degradation of Li-rich layered oxides(LROs)cathodes in Li-ion batteries.Thus,stabilizing the surfaces of LROs is the key to realize their practical application in high energy density Li-ion batteries.Surface coating is regarded as one of the most effective strategies for high voltage cathodes.The ideal coating materials should prevent cathodes from electrolyte corrosion and possess both electronic and Li-ionic conductivities simultaneously.However,commonly reported coating materials are unable to balance these functions well.Herein,a new type of coating material,La_(2)CuO_(4)was introduced to mitigate the surface issues of LROs for the first time,due to its superb electronic conductivity(26-35 mS·cm^(-1))and lithium-ionic diffusion coefficient(10^(-12)-10^(-13)cm^(2)·s^(-1)).After coating with the La_(2)CuO_(4),the capacity retention of Li_(1.2)Ni_(0.54)Co_(0.13)Mn_(0.13)O_(2)cathode was increased to 85.9%(compared to 79.3%of uncoated cathode)after 150 cycles in the voltage range of 2.0-4.8 V.In addition,only negligible degradations on the deliverable capacity and rate capability were observed. 展开更多
关键词 La_(2)CuO_(4) electronic conductivity Li-ionic conductivity Li-rich layered oxides high voltage
下载PDF
A lithium–tin fluoride anode enabled by ionic/electronic conductive paths for garnet-based solid-state lithium metal batteries
13
作者 Lei Zhang Qian-Kun Meng +8 位作者 Xiang-Ping Feng Ming Shen Yu-Qing Zhang Quan-Chao Zhuang Run-Guo Zheng Zhi-Yuan Wang Yan-Hua Cui Hong-Yu Sun Yan-Guo Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期575-587,共13页
The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,... The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,wide electrochemical window,and stability to Li metal anode,are promising solid-state electrolyte(SSEs)materials for SSLMBs.However,Li/LLZTO interface issues including high interface resistance,inhomogeneous Li deposition,and Li dendrite growth have hindered the practical application of SSLMBs.Herein,a multi-functional Li–SnF_(2) composite anode with Li,LiF,and Li-Sn alloy was specifically designed and prepared.The composite anode improves the wettability to LLZTO,constructing an intimate contact interface between it and LLZTO.Meanwhile,ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite.The solid-state symmetric cell exhibits low interface resistance(11Ω·cm^(2)) and high critical current density(1.3 mA·cm^(−2))at 25℃.The full SSLMB based on LiFePO_(4) or LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode also shows stable cycling performance and high rate capability.This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries(SSLMBs) Lithium-tin fluoride anode Ionic/electronic conductive Interface resistance Lithium dendrite
原文传递
Fowler-Nordheim Tunneling, Photovoltaic Applications and New Band Structure Models of Electroconductive a-CNx:H Films Formed by Supermagnetron Plasma CVD
14
作者 Haruhisa Kinoshita 《Journal of Modern Physics》 2016年第15期2008-2027,共21页
Hydrogenated amorphous carbon nitride (a-CN<sub>x</sub>:H) films were formed on Al films deposited on Si or glass (SiO<sub>2</sub>) substrates, using pulsed radio frequency (PRF) supermagnetron... Hydrogenated amorphous carbon nitride (a-CN<sub>x</sub>:H) films were formed on Al films deposited on Si or glass (SiO<sub>2</sub>) substrates, using pulsed radio frequency (PRF) supermagnetron plasma (SMP) chemical vapor deposition (CVD) with N<sub>2</sub>/i-C<sub>4</sub>H<sub>10</sub> mixed gases. a-CN<sub>x</sub>:H films were grown under the upper and lower electrode RF powers (13.56 MHz) of continuous and pulsed conditions, respectively, which showed low band gap of about 0.7 eV. a-CN<sub>x</sub>:H films deposited on the Al/Si or Al/SiO<sub>2</sub> substrates showed same low threshold emission electric field (ETH) of 12 V/μm. Multiple layer of Al or ITO (anode)/50nm-SiO<sub>2</sub>/a-CN<sub>x</sub>:H/Al (cathode)/Si structures showed Fowler-Nordheim (FN) electron tunneling effect in both forward and reverse current directions. 12.5 nm a-CN<sub>x</sub>:H film on p-Si substrate showed a photoelectric conversion. Energy band structure and electron conduction models were proposed for the active states of both the field emission and FN tunneling devices and photovoltaic cells. 展开更多
关键词 Supermagnetron Plasma Chemical Vapor Deposition Amorphous Carbon Nitride Energy Band electron conduction Field Emission FN Tunneling Photovoltaic Cell
下载PDF
CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life 被引量:7
15
作者 Qiang Zhang Ning Huang +3 位作者 Zhen Huang Liangting Cai Jinghua Wu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期151-155,I0006,共6页
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite fo... The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention. 展开更多
关键词 CNTs@S composite All-solid-state lithium-sulfur battery electronic conduction network Interfacial contact Ultralong cycle life
下载PDF
Study on rare earth electrolyte of SDC-LSGM 被引量:3
16
作者 徐丹 刘晓梅 +4 位作者 朱成军 王德军 严端廷 王德涌 苏文辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期241-244,共4页
Ce0.85Sm0.15O1.925 (SDC) and La0.9Sr0.1Ga0.5Mg0.2O2.85 (LSGM) were synthesized using Glycine-Nitrate Process (GNP), and the composite electrolytes were prepared by mixing SDC and LSGM. An X-ray diffraction patte... Ce0.85Sm0.15O1.925 (SDC) and La0.9Sr0.1Ga0.5Mg0.2O2.85 (LSGM) were synthesized using Glycine-Nitrate Process (GNP), and the composite electrolytes were prepared by mixing SDC and LSGM. An X-ray diffraction pattern indicated that the mixture of SDC and LSGM consisted of their original phases after heating at 1450 ℃ for 10 h. The electronic conductivity of SDC-LSGM composite electrolytes were measured by direct current polarization method using Hebb-Wagner ion blocking cell at 700-800 ℃ in the oxygen partial pressure range of 104-10-20 MPa and compared with the results of SDC. Typical polarization curves, which were theoretically predicted, were observed on all the samples. The slopes of lgσe-lgPo2 plot for all the composite electrolytes agreed with the theoretically predicted value of-1/4 at some intermediate oxygen partial pressures and -1/6 at low oxygen partial pressure. The electronic conductivity of SDC-LSGM composite electrolytes decreased with the increase in LSGM content, whereas the ionic transport number ti of all the samples increased with the increase in LSGM content. 展开更多
关键词 composite electrolyte SDC electronic conductivity ionic transport number rare earths
下载PDF
Hydrogen Permeation Properties of Perovskite-type BaCe_(0.9)Mn_(0.1)O_(3-δ)Dense Ceramic Membrane 被引量:2
17
作者 Guang Tao LI Guo Xing XIONG +1 位作者 Shi Shan SHENG Wei Shen YANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第10期937-940,共4页
The electrical conduction properties of dense BaCe0.9Mn0.1O3-d (BCM10) membrane were investigated in the temperature range of 600-900oC. High ionic and electronic conductivities at elevated temperatures make BCM10 a ... The electrical conduction properties of dense BaCe0.9Mn0.1O3-d (BCM10) membrane were investigated in the temperature range of 600-900oC. High ionic and electronic conductivities at elevated temperatures make BCM10 a potential ceramic material for hydrogen separation. Hydrogen permeation through BCM10 membranes was studied using a high- temperature permeation cell. Little hydrogen could be detected at the sweep side. However, appreciable hydrogen can permeate through BCM10 membrane coated with porous platinum black, which shows that the process of hydrogen permeation through BCM10 membranes was controlled by the catalytic decomposition and recomposition of hydrogen on the surfaces of BCM10 membranes. 展开更多
关键词 Hydrogen permeation dense ceramic membranes barium cerate proton and electron conductivity.
下载PDF
Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries 被引量:2
18
作者 Tianlai Wu Weicai Zhang +6 位作者 Jiaying Yang Qiongqiong Lu Jing Peng Mingtao Zheng Fei Xu Yingliang Liu Yeru Liang 《Carbon Energy》 CAS 2021年第4期554-581,共28页
The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate... The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources.Nevertheless,further development and wide application of KIBs are still challenged by several obstacles,one of which is their fast capacity deterioration at high rates.A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies.This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs,and also the beneficial conceptions are consciously extracted from the recent progress.Particularly,basic insights into the recent engineering strategies,structural innovation,and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns.Based on the achievements attained so far,a perspective on the foregoing,and proposed possible directions,and avenues for designing high-rate anodes,are presented finally. 展开更多
关键词 carbonaceous anodes electronic conductivity high-rate performance ion diffusivity potassiumion batteries
下载PDF
Influence of Conductivity of Slag on Decarburization Reaction 被引量:1
19
作者 Xionggang Lu Fushen Li +1 位作者 Lifen Li Kouchih Chou (Laboratory on Solid Electrolytes and Metallurgical Testing Techniques, University of Science and Technology Beijing, Beijin 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第1期20-22,共3页
By altering the electrochemical properties of slag, the decarburization reaction of Fe3+-based slag withFe-C droplet was studied. The results showed that a lot of free electrons and holes exist in the slag containing ... By altering the electrochemical properties of slag, the decarburization reaction of Fe3+-based slag withFe-C droplet was studied. The results showed that a lot of free electrons and holes exist in the slag containing transition metal oxides (such as TiO2 and Fe2O3). So electronic conduction in the slag increases. Finally, it led to the increment of the decarburization reaction rate between slag and Fe-C droplet, and mass fraction of carbon remaining indroplet decreases to a lower level. 展开更多
关键词 smelt slag electronic conductivity decarburization reaction
下载PDF
Understanding De-protonation Induced Formation of Spinel Phase in Li-rich Layered Oxides for Improved Rate Performance 被引量:1
20
作者 李保云 李广社 +3 位作者 张丹 范建明 冯涛 李莉萍 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第11期1723-1736,共14页
Constructing layered-spinel composites is important to improve the rate performance of lithium-rich layered oxides.However,up to now,the effect of microstructure of composites on the rate performance has not been well... Constructing layered-spinel composites is important to improve the rate performance of lithium-rich layered oxides.However,up to now,the effect of microstructure of composites on the rate performance has not been well investigated.In this study,a series of samples were prepared by a simple protonation and de-protonation for the pristine layered material(LiMnNiCoO)obtained by sol-gel method.The characterizations of XRD,Raman and oxidation-reduction potentials of charge-discharge curves demonstrated that these samples after de-protonation are layered-spinel composites.When these composites were tested as a cathode of lithium-ion batteries,the sample treated with 0.1 M of nitric acid exhibited higher discharge capacities at each current density than that of other composites.The outstanding rate performance is attributed to the high concentration of conduction electron resulting from the low average valence state(44.2%of Ni)as confirmed by its high conductivity(1.124×10??mat39800Hz)and ambient temperature magnetic susceptibility(8.40×10emu/Oe?mol).This work has a guiding significance for the synthesis of high rate performance of lithium battery cathode materials. 展开更多
关键词 protonation and de-protonation layered-spinel composites rate performance conduction electron
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部