A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.Acc...A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.According to the requirements of space environment simulation,the electron beam energy can be adjusted in the range from 3.5 to 10 MeV,and the average current can be adjusted in the range from 0.1 to 1 mA.The linac should be capable of providing beam irradiation over a large area of 1 m^(2) with a uniformity greater than 90% and a scanning rate of 100 Hz.A novel method was applied to achieve such a high beam scanning rate by combining a kicker and a scanning magnet.Based on this requirement,a design for the10 MeV linac is proposed with an RF power pulse repetition rate of 500 Hz;it includes a thermal cathode electron gun,a bunching-accelerating section,and a scanning transport line.The detailed physical design and dynamic simulation results of the proposed 10 MeV electron linac are presented in this paper.展开更多
A series of completely sealed standing-wave (SW) accelerator guides was developed and installed on 3,4, 6, 9 and 14 MeV home-made electron linacs for medical and industrial uses. In the development of these SW guides,...A series of completely sealed standing-wave (SW) accelerator guides was developed and installed on 3,4, 6, 9 and 14 MeV home-made electron linacs for medical and industrial uses. In the development of these SW guides, various subjects, including particle dynamics, microwave properties etc, were studied. The fsctors influencing the transverse motion were considered analytically and using a simulation code, TRSV. The problem of electron backbombardment in SW linac was analyzed by a 3-dimensional trace code, SB. Simultaneously decreasing the length of the first cavity and the injection voltage can reduced the electron backbombarding power. The code PPDW based on equivalent circuit theory was developed to analyze many microwave characteristics of arbitrarily composed coupled cavity chains. This research contributed to the successful development of the 3, 4, 6, 9 and 14MeV SW accelerator guides. For example, in the recently developed 14MeV SW guide, the beam passes smoothly through a 1.45 m long guide with a beamhole (diameter of 7 mm) without using a focusing solenoid.展开更多
IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerat...IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results met the design goal. Recently, the injector testing facility was disassembled and all of the components for the whole accelerator have been shipped to Ukraine from China by the ocean shipping. The installation of the whole machine in KIPT will be started in June, 2013. The construction progress, the design and testing results of the injector beam and key hardware are presented.展开更多
A new method to monitor the energy variation of a multi-energy electron linac by combining a Cerenkov detector and a CsI(Tl) detector is reported. The signals in the Cerenkov detector show an appreciable but differe...A new method to monitor the energy variation of a multi-energy electron linac by combining a Cerenkov detector and a CsI(Tl) detector is reported. The signals in the Cerenkov detector show an appreciable but different dependence on the energy of the electron linac from the traditional CsI(Tl) detector due to the particular response of the former to charged electrons with high velocity above threshold. The method is more convenient than the HVL (half-value layer) method which is commonly employed to calibrate the energy of an electron linac for real time monitoring. The preliminary validity of the method is verified in a dual-energy electron linac with 6 MeV and 3 MeV gears. Moreover, the method combining the Cerenkov detector and the CsI(Tl) detector is applicable to probe the X-ray spectrum hardened by the inspected material and may serve as a novel tool for material discrimination with effective atomic number in radiation imaging.展开更多
Background: Magnetic resonance image-guided radiation therapy (MR-IGRT) promises more precise and effective radiation treatments compared to conventional IGRT by using real-time on-board MR imaging. Under the influenc...Background: Magnetic resonance image-guided radiation therapy (MR-IGRT) promises more precise and effective radiation treatments compared to conventional IGRT by using real-time on-board MR imaging. Under the influence of a magnetic field, however, secondary electrons exiting a surface can be forced in a circular path and re-enter the medium, resulting in dose increase at a beam-exit surface, called the electron return effect (ERE). The purpose of the study is to compare the exit skin dose computed by Monte Carlo dose calculation with measurements using an adult anthropomorphic phantom and to measure the effect of skin dose reduction by adding 1 cm-thick bolus. Method: The plan was compared with measurements using an adult anthropomorphic phantom combined with radiochromic films and thermoluminescent dosimeters. We also measured the skin dose reduction by adding 1 cm-thick bolus on the frontal surface of the phantom. Results: We found that 1 cm-thick bolus reduced the skin dose by up to 20% both in measurements and calculations. The plan was found to overestimate the measured skin dose by about 10% and there was no significant difference in the bolus effect between the breast skin and the skin (without breast attachment) doses. Conclusion: In conclusion, we confirmed the ERE effect on the anthropomorphic phantom under the magnetic field and the exit skin dose reduction by adding a bolus. Skin dose measurements using anthropomorphic phantom may be helpful to evaluate more realistic skin dose and the bolus effect in the magnetic field.展开更多
Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine w...Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine will not operate properly. In the electron linac of a soft X-ray FEL device, because the eiectron energy is not very high, the problem can become even more serious. As a typical example, the microbunching instability in the linac of the proposed Shanghai Soft X-ray Free Electron Laser facility (SXFEL) is investigated in detail by means of both analytical formulae and simulation tools. In the study, a new mechanism introducing random noise into the beam current profile as the beam passes through a chicane-type bunch compressor is proposed. The higher-order modes that appear in the simulations suggest that further improvement of the current theoretical model of the instability is needed.展开更多
The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for l...The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.展开更多
An L band RF linac is now under installation at CIAE to provide intense electronbeam for a far-infrared free-electron laser oscillator.This linac consists of a DC thermionicgun,a subharmonic prebuncher,a buncher,an ac...An L band RF linac is now under installation at CIAE to provide intense electronbeam for a far-infrared free-electron laser oscillator.This linac consists of a DC thermionicgun,a subharmonic prebuncher,a buncher,an accelerating section and a beam transport line.From the INEX(Integrated Numerical Experiment)conducted for prediction of the perfor-mance of the complex and the comparison of some of the simulation results with available ex-perimental data,it shows that the beam quality can satisfy our FEL requirements.展开更多
文摘A compact 10 MeV S-band irradiation electron linear accelerator(linac)was developed to simulate electronic radiation in outer space and perform electron irradiation effect tests on spacecraft materials and devices.According to the requirements of space environment simulation,the electron beam energy can be adjusted in the range from 3.5 to 10 MeV,and the average current can be adjusted in the range from 0.1 to 1 mA.The linac should be capable of providing beam irradiation over a large area of 1 m^(2) with a uniformity greater than 90% and a scanning rate of 100 Hz.A novel method was applied to achieve such a high beam scanning rate by combining a kicker and a scanning magnet.Based on this requirement,a design for the10 MeV linac is proposed with an RF power pulse repetition rate of 500 Hz;it includes a thermal cathode electron gun,a bunching-accelerating section,and a scanning transport line.The detailed physical design and dynamic simulation results of the proposed 10 MeV electron linac are presented in this paper.
文摘A series of completely sealed standing-wave (SW) accelerator guides was developed and installed on 3,4, 6, 9 and 14 MeV home-made electron linacs for medical and industrial uses. In the development of these SW guides, various subjects, including particle dynamics, microwave properties etc, were studied. The fsctors influencing the transverse motion were considered analytically and using a simulation code, TRSV. The problem of electron backbombardment in SW linac was analyzed by a 3-dimensional trace code, SB. Simultaneously decreasing the length of the first cavity and the injection voltage can reduced the electron backbombarding power. The code PPDW based on equivalent circuit theory was developed to analyze many microwave characteristics of arbitrarily composed coupled cavity chains. This research contributed to the successful development of the 3, 4, 6, 9 and 14MeV SW accelerator guides. For example, in the recently developed 14MeV SW guide, the beam passes smoothly through a 1.45 m long guide with a beamhole (diameter of 7 mm) without using a focusing solenoid.
文摘IHEP, China is constructing a 100 MeV/100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results met the design goal. Recently, the injector testing facility was disassembled and all of the components for the whole accelerator have been shipped to Ukraine from China by the ocean shipping. The installation of the whole machine in KIPT will be started in June, 2013. The construction progress, the design and testing results of the injector beam and key hardware are presented.
文摘A new method to monitor the energy variation of a multi-energy electron linac by combining a Cerenkov detector and a CsI(Tl) detector is reported. The signals in the Cerenkov detector show an appreciable but different dependence on the energy of the electron linac from the traditional CsI(Tl) detector due to the particular response of the former to charged electrons with high velocity above threshold. The method is more convenient than the HVL (half-value layer) method which is commonly employed to calibrate the energy of an electron linac for real time monitoring. The preliminary validity of the method is verified in a dual-energy electron linac with 6 MeV and 3 MeV gears. Moreover, the method combining the Cerenkov detector and the CsI(Tl) detector is applicable to probe the X-ray spectrum hardened by the inspected material and may serve as a novel tool for material discrimination with effective atomic number in radiation imaging.
文摘Background: Magnetic resonance image-guided radiation therapy (MR-IGRT) promises more precise and effective radiation treatments compared to conventional IGRT by using real-time on-board MR imaging. Under the influence of a magnetic field, however, secondary electrons exiting a surface can be forced in a circular path and re-enter the medium, resulting in dose increase at a beam-exit surface, called the electron return effect (ERE). The purpose of the study is to compare the exit skin dose computed by Monte Carlo dose calculation with measurements using an adult anthropomorphic phantom and to measure the effect of skin dose reduction by adding 1 cm-thick bolus. Method: The plan was compared with measurements using an adult anthropomorphic phantom combined with radiochromic films and thermoluminescent dosimeters. We also measured the skin dose reduction by adding 1 cm-thick bolus on the frontal surface of the phantom. Results: We found that 1 cm-thick bolus reduced the skin dose by up to 20% both in measurements and calculations. The plan was found to overestimate the measured skin dose by about 10% and there was no significant difference in the bolus effect between the breast skin and the skin (without breast attachment) doses. Conclusion: In conclusion, we confirmed the ERE effect on the anthropomorphic phantom under the magnetic field and the exit skin dose reduction by adding a bolus. Skin dose measurements using anthropomorphic phantom may be helpful to evaluate more realistic skin dose and the bolus effect in the magnetic field.
基金Supported by National Natural Science Foundation of China,(11275253)Natural Science Foundation of Shanghai City(12ZR1436600)
文摘Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine will not operate properly. In the electron linac of a soft X-ray FEL device, because the eiectron energy is not very high, the problem can become even more serious. As a typical example, the microbunching instability in the linac of the proposed Shanghai Soft X-ray Free Electron Laser facility (SXFEL) is investigated in detail by means of both analytical formulae and simulation tools. In the study, a new mechanism introducing random noise into the beam current profile as the beam passes through a chicane-type bunch compressor is proposed. The higher-order modes that appear in the simulations suggest that further improvement of the current theoretical model of the instability is needed.
文摘The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.
基金The project supported by the Nuclear Industry Science Foundation of China
文摘An L band RF linac is now under installation at CIAE to provide intense electronbeam for a far-infrared free-electron laser oscillator.This linac consists of a DC thermionicgun,a subharmonic prebuncher,a buncher,an accelerating section and a beam transport line.From the INEX(Integrated Numerical Experiment)conducted for prediction of the perfor-mance of the complex and the comparison of some of the simulation results with available ex-perimental data,it shows that the beam quality can satisfy our FEL requirements.