期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes
1
作者 叶萌 夏蔡娟 +4 位作者 杨爱云 张博群 苏耀恒 涂喆研 马越 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期71-74,共4页
We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-princ... We investigate the electronic transport properties of dipyrimidinyl-diphenyl sandwiched between two armchair graphene nanoribbon electrodes using the nonequilibrium Green function formalism combined with a first-principles method based on density functional theory. Among the three models M1–M3, M1 is not doped with a heteroatom. In the left parts of M2 and M3, nitrogen atoms are doped at two edges of the nanoribbon. In the right parts, nitrogen atoms are doped at one center and at the edges of M2 and M3, respectively. Comparisons of M1, M2 and M3 show obvious rectifying characteristics, and the maximum rectification ratios are up to 42.9 in M2. The results show that the rectifying behavior is strongly dependent on the doping position of electrodes. A higher rectification ratio can be found in the dipyrimidinyl-diphenyl molecular device with asymmetric doping of left and right electrodes, which suggests that this system has a broader application in future logic and memory devices. 展开更多
关键词 electronic transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes NDR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部