期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Crystallographic Characteristic of Intermetallic Compounds in Al-Si-Mg Casting Alloys Using Electron Backscatter Diffraction 被引量:2
1
作者 ZOU Yongzhi XU Zhengbing +1 位作者 HE Juan ZENG Jianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期305-311,共7页
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mecha... The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys. 展开更多
关键词 Al-Si-Mg alloys intermetallic compound electron backscatter diffraction(EBSD) X-ray powder diffraction(XRD)
下载PDF
Electron backscatter diffraction investigation of duplex-phase microstructure in a forged Zr-2.5Nb alloy 被引量:5
2
作者 CHAI LinJiang WANG ShuYan +1 位作者 LUAN BaiFeng LIU Qing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第4期673-679,共7页
Microstructural features of a duplex-phase Zr-2.5Nb alloy were investigated in detail using electron channeling contrast (ECC) imaging and electron backscatter diffraction (EBSD) technique in an emission gun scann... Microstructural features of a duplex-phase Zr-2.5Nb alloy were investigated in detail using electron channeling contrast (ECC) imaging and electron backscatter diffraction (EBSD) technique in an emission gun scanning electron microscope (FEGSEM). The excellent resolution provided by the FEGSEM promises the combined utilization of both techniques to be quite adequate for characterizing the duplex-phase microstructures. Results show that the microstructure of the Zr-2.5Nb alloy is composed of bulk a grains (majority) in equiaxed or plate shape and thin 13 films (minority) surrounding the bulk grains, with their average grain size and thickness measured to be 1.4 prn and 72 nm, respectively. Analyses on a-grain boundaries reveal a number of low angle boundaries, most of which belong to deformation-induced dislocation boundaries. Measurements on relative propor- tions of various Burgers boundaries suggest very weak (if any) variant selection during 13 ~ a cooling, which should be re- lated to deformation-induced higher nucleation rate of a phases. Compared to earlier attempts, more satisfactory indexing of fine β phases (down to nanoscale) is attained by the FEGSEM-based EBSD. Examples are presented to clearly reveal well-obeyed Burgers orientation relationships between adjacent α and β phases. Finally, it is deduced that continuing applica- tion of the FEGSEM-based EBSD to duplex-phase Zr alloys could help clarify controversies like the deformation priority of the two phases. 展开更多
关键词 Zr alloy duplex-phase MICROSTRUCTURE electron backscatter diffraction
原文传递
An Algorithm to Analyze Electron Backscatter Diffraction Data for Grain Reconstruction:from Methodology to Application
3
作者 Xue-Hao Zheng Hong-Wang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第5期491-499,共9页
An algorithm for grain reconstruction based on electron backscatter diffraction data was proposed in this paper. This algorithm can well record the original data arrangement when an external file for the reconstructed... An algorithm for grain reconstruction based on electron backscatter diffraction data was proposed in this paper. This algorithm can well record the original data arrangement when an external file for the reconstructed grain(s) was exported for further post-processing. Assisted by an in-house MATLAB program, grain reconstruction, lattice rotations, orientation spreads, and slip system analysis can be performed. The validity of this algorithm has been successfully tested by polycrystalline Ni before and after channel die compression. 展开更多
关键词 Grain reconstruction ALGORITHM electron backscatter diffraction DEFORMATION Nickle
原文传递
Analysis of Orange Peel Defect in St14 Steel Sheet by Electron Backscattered Diffraction (EBSD) 被引量:7
4
作者 ShengquanCAO JinxuZHANG +1 位作者 JianshengWU JiaguangCHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期17-20,共4页
In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in ... In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in the st14 steel sheet was resulted from the local coarse grains which were produced during hot-rolling due to the critical deformation in dual-phase zone. During deep drawing, the coarse grains with {100}<001> microtexture can slip on the {112}<111> slip system to form bulging and yields orange peel defects, while the coarse grains with {112}<110> orientation do not form the defect as the Schmid factor of {112}<111> slip system in it equals zero. 展开更多
关键词 electron backscattered diffraction (EBSD) Orange peel defect Stl4 steel MICROTEXTURE
下载PDF
Analysis of deformation mechanisms in magnesium single crystals using a dedicated four-point bending tester
5
作者 Yutaka Yoshida Rikuto Izawa Kenji Ohkubo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1911-1917,共7页
In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ... In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials. 展开更多
关键词 Four-point bending Magnesium single crystal TWINNING Basal slip Scanning electron microscopy electron backscatter diffraction
下载PDF
Residual stress measurement and analysis of siliceous slate-containing quartz veins 被引量:1
6
作者 Tao Wang Weiwei Ye +2 位作者 Yemeng Tong Naisheng Jiang Liyuan Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2310-2320,共11页
Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production.Thus,residual stress is considered a feasible method to explain these geomechanical ph... Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production.Thus,residual stress is considered a feasible method to explain these geomechanical phenomena.In this study,electron backscatter diffraction(EBSD)and optical microscopy were used to characterize the rock microcosm.A measuring area that met the requirements of X-ray diffraction(XRD)residual stress measurement was determined to account for the mechanism of rock residual stress.Then,the residual stress of a siliceous slate-containing quartz vein was measured and calculated using the sin^(2) ϕ method equipped with an X-ray diffractometer.Analysis of microscopic test results showed homogeneous areas with small particles within the millimeter range,meeting the requirements of XRD stress measurement statistics.Quartz was determined as the calibration mineral for slate samples containing quartz veins.The diffraction patterns of the(324)crystal plane were obtained under different ϕ and φ.The deviation direction of the diffraction peaks was consistent,indicating that the sample tested had residual stress.In addition,the principal residual stress within the quartz vein measured by XRD was compressive,ranging from 10 to 33 MPa.The maximum principal stress was parallel to the vein trend,whereas the minimum principal stress was perpendicular to the vein trend.Furthermore,the content of the low-angle boundary and twin boundary in the quartz veins was relatively high,which enhances the resistance of the rock mass to deformation and promotes the easy formation of strain concentrations,thereby resulting in residual stress.The proposed method for measuring residual stress can serve as a reference for subsequent observation and related research on residual stress in different types of rocks. 展开更多
关键词 residual stress siliceous sand rock microstructure X-ray diffraction electron backscatter diffraction
下载PDF
Residual elastic stress strain field and geometrically necessary dislocation density distribution around nano-indentation in TA15 titanium alloy 被引量:7
7
作者 何东 朱景川 +3 位作者 来忠红 刘勇 杨夏炜 农智升 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期7-13,共7页
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri... Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density. 展开更多
关键词 nano-hardness stress strain fields geometrically necessary dislocation NANOINDENTATION electron backscatter diffraction TA15 titanium alloy
下载PDF
Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation:Sample preparation, parameters optimization and analysis 被引量:2
8
作者 陈勇军 Jarle HJELEN Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1801-1809,共9页
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS... With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD. 展开更多
关键词 electron backscatter diffraction (EBSD) sample preparation parameters optimization step size severe plastic deformation (SPD)
下载PDF
Crystallographic analysis of lath martensite in a 13Cr-5Ni steel by electron backscattering diffraction
9
作者 Wen-bo Liu Peng-cheng Song +3 位作者 Chi Zhang Di Yun Chun-fa Yao Zhi-gang Yang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第2期213-220,共8页
Morphology observation and crystallographic analysis of lath martensite in 13Cr-5Ni steel were investigated by electron backscattering diffraction (EBSD) in a scanning electron microscope. The pole figures of the mi... Morphology observation and crystallographic analysis of lath martensite in 13Cr-5Ni steel were investigated by electron backscattering diffraction (EBSD) in a scanning electron microscope. The pole figures of the microstructure measured by EBSD showed that the martensite in this steel held the Kurdjumov-Sachs (K-S) orientation relationship, and the boundary misorientations after the austenite-martensite transformation were also analyzed. However, not all the 24 possible variants in the K-S relationship were observed in a single prior austenite grain. Sub-blocks with special combinations were observed, which can be explained by the minimization of the total shape strain between the adjacent variants introduced during the martensite transformation and relatively low carbon content in the 13Cr-5Ni steel. 展开更多
关键词 electron backscattering diffraction Martensite transformation Boundary misorientation Orientationrelationship
原文传递
Grain refinement of magnesium alloys processed by severe plastic deformation 被引量:5
10
作者 陈勇军 王渠东 +3 位作者 林金保 刘满平 Jarle HJELEN Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3747-3754,共8页
Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained micro... Grain refinement of AZ31 Mg alloy during cyclic extrusion compression (CEC) at 225-400 ℃ was investigated quantitatively by electron backscattering diffraction (EBSD). Results show that an ultrafine grained microstructure of AZ31 alloy is obtained only after 3 passes of CEC at 225 ℃. The mean misorientation and the fraction of high angle grain boundaries (HAGBs) increase gradually by lowering extrusion temperature. Only a small fraction of {101^-2} twinning is observed by EBSD in AZ31 Mg alloys after 3 passes of CEC. Schmid factors calculation shows that the most active slip system is pyramidal slip {101^-1}〈1120〉and basal slip {0001}〈1120〉 at 225-350 ℃ and 400 ℃, respectively. Direct evidences at subgrain boundaries support the occurrence of continuous dynamic recrystallization (CDRX) mechanism in grain refinement of AZ31 Mg alloy processed by CEC. 展开更多
关键词 magnesium alloys grain refinement continuous dynamic recrystallization (CDRX) electron backscattering diffraction(EBSD) cyclic extrusion compression (CEC)
下载PDF
Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate 被引量:6
11
作者 K.JESHURUN LIJAY J.DAVID RAJA SELVAM +1 位作者 I.DINAHARAN S.J.VIJAY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1791-1800,共10页
Aluminum alloys AA6061 reinforced with various amounts (0, 2.5% and 5%, mass fraction) of TiC particles were synthesized by the in situ reaction of inorganic salt K2TiF6 and ceramic particle SiC with molten aluminum... Aluminum alloys AA6061 reinforced with various amounts (0, 2.5% and 5%, mass fraction) of TiC particles were synthesized by the in situ reaction of inorganic salt K2TiF6 and ceramic particle SiC with molten aluminum. The casting was carried out at an elevated temperature and held for a longer duration to decompose SiC to release carbon atoms. X-ray diffraction patterns of the prepared AMCs clearly revealed the formation of TiC particles without the occurrence of any other intermetallic compounds. The microstructure of the prepared AA6061/TiC AMCs was studied using field emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The in situ formed TiC particles were characterized with homogeneous distribution, clear interface, good bonding and various shapes such as cubic, spherical and hexagonal. EBSD maps showed the grain refinement action of TiC particles on the produced composites. The formation of TiC particles boosted the microhardness and ultimate tensile strength (UTS) of the AMCs. 展开更多
关键词 aluminum matrix composite titanium carbide electron backscatter diffraction CASTING microstructure mechanical properties
下载PDF
Microstructure analyses and phase-field simulation of partially divorced eutectic solidification in hypoeutectic Mg-Al Alloys 被引量:4
12
作者 Joo-Hee Kang Jiwon Park +3 位作者 Kyung Song Chang-Seok Oh Oleg Shchyglo Ingo Steinbach 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1672-1679,共8页
In this study the partially divorced eutectic microstructure ofα-Mg andβ-Mg17Al12was investigated by electron backscatter diffraction,transmission electron microscopy,and phase-field modeling in hypoeutectic Mg-Al a... In this study the partially divorced eutectic microstructure ofα-Mg andβ-Mg17Al12was investigated by electron backscatter diffraction,transmission electron microscopy,and phase-field modeling in hypoeutectic Mg-Al alloys.The orientation relationships between the individual eutecticαgrains,eutecticβphase,and primaryαgrains were investigated.While the amount of eutectic morphology is primarily determined by the Al content,the in-depth microstructure analyses and the phase-field simulation suggest non-interactive nucleation and growth of eutecticαphase in theβphase grown on the interdendritic primaryαdendrites.Also,phase-field simulations showed a preferred nucleation sequence where theβphase nucleates first and subsequently triggers the nucleation of eutecticαphase at the movingβphase solidification front,which supports the microstructural analysis results. 展开更多
关键词 Mg-Al alloy Partially divorced eutectic SOLIDIFICATION electron backscatter diffraction Phase-Field modeling
下载PDF
Characterization of microstructure and strain response in Ti-6Al-4V plasma welding deposited material by combined EBSD and in-situ tensile test 被引量:2
13
作者 Martin BORLAUG MATHISEN Lars ERIKSEN +2 位作者 Yingda YU Ola JENSRUD Jarle HJELEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3929-3943,共15页
Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of col... Additive layer manufacturing (ALM) of aerospace grade titanium components shows great promise in supplying a cost-effective alternative to the conventional production routes. Complex microstructures comprised of columnar remnants of directionally solidifiedβ-grains, with interior inhabited by colonies of finerα-plate structures, were found in samples produced by layered plasma welding of Ti-6Al-4V alloy. The application of in-situ tensile tests combined with rapid offline electron backscatter diffraction (EBSD) analysis provides a powerful tool for understanding and drawing qualitative correlations between microstructural features and deformation characteristics. Non-uniform deformation occurs due to a strong variation in strain response between colonies and across columnar grain boundaries. Prismatic and basal slip systems are active, with the prismatic systems contributing to the most severe deformation through coarse and widely spaced slip lines. Certain colonies behave as microstructural units, with easy slip transmission across the entire colony. Other regions exhibit significant deformation mismatch, with local build-up of strain gradients and stress concentration. The segmentation occurs due to the growth morphology and variant constraints imposed by the columnar solidification structures through orientation relationships, interface alignment and preferred growth directions. Tensile tests perpendicular to columnar structures reveal deformation localization at columnar grain boundaries. In this work connections are made between the theoretical macro- and microstructural growth mechanisms and the observed microstructure of the Ti-6Al-4V alloy, which in turn is linked to observations during in-situ tensile tests. 展开更多
关键词 Ti-6Al-4V alloy additive layer manufacturing electron backscatter diffraction in-situ tensile test plasma arc welding MICROSTRUCTURE plastic deformation
下载PDF
Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM 被引量:4
14
作者 Huachun pi Jingtao Han +2 位作者 Chuanguo Zhang A. Kiet Tieu Zhengyi Jiang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期43-47,共5页
The crystal plasticity finite element modeling (CPFEM) is realized in commercial finite element code ABAQUS with UMAT subroutine on the basis of the crystal plasticity theory of rate dependent polycrystal constituti... The crystal plasticity finite element modeling (CPFEM) is realized in commercial finite element code ABAQUS with UMAT subroutine on the basis of the crystal plasticity theory of rate dependent polycrystal constitutive relations in the mesoscopic scale. The initial orientations obtained by electron backscatter diffraction (EBSD) are directly input into the CPFEM to simulate the mechanical response of polycrystalline 1050 pure Al in uniaxial tensile deformation. Two polycrystal models and two tensile strain rates were used in the simulations. The stress-strain curves of tensile deformation were analyzed. The predictions and the corresponding experiment result show reasonable agreement and slight deviation with experiments. The flow true stress of strain rate 0.01 s^-1 is higher than that of strain rate 0.001 s^-1. At the strain less than 0.05, the stress saturated rate of the experiment is higher than the simulated results. However, the stress saturated rate of the experiment becomes gentler than the corresponding simulated predictions at the strain over 0.05. Also, necking was simulated by the two models, but the necking strain is not well predicted. Tensile textures at strain 0.25 were predicted at the low strain rate of 0.001 s^-1. The predictions are in good accord with the experimental results. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 crystal plasticity f'mite element method electron backscatter diffraction (EBSD) uniaxial tensile deformation
下载PDF
Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415 被引量:2
15
作者 Hong-xia Lan Xiu-fang Gong +3 位作者 Sen-feng Zhang Liang Wang Bin Wang Li-ping Nie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期943-953,共11页
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316 L and low alloy high strength steel L415.The effect of ultrasonic vibration on the microstructure and mechanical prop... Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316 L and low alloy high strength steel L415.The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316 L and L415 was systematically investigated.The microstructures of both heat affected zones of L415 and weld metal were substantially refined,and the clusters ofδferrite in traditional tungsten inert gas(TIG)weld were changed to a dispersive distribution via the ultrasonic vibration.The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld.With the application of ultrasonic vibration,the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15%to31.54%,respectively.The content ofΣ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one,indicating an excellent weld metal crack resistance. 展开更多
关键词 ultrasonic vibration dissimilar metal welding MICROSTRUCTURE mechanical properties MICRO-SEGREGATION electron backscatter diffraction
下载PDF
Microstructural characterization of Inconel 718 alloy after pulsed laser surface treatment at different powers 被引量:2
16
作者 Lin-jiang CHAI Shan-shan YUAN +4 位作者 Wei-jiu HUANG Xu-sheng YANG Fang-jun WANG Dong-zhe WANG Jun-jun WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第8期1530-1537,共8页
An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatte... An annealed Inconel 718 alloy was surface-treated by pulsed laser at three different powers(100, 50 and 25 W). Microstructural changes induced by the laser treatments were characterized by use of electron backscatter diffraction and electron channeling contrast imaging techniques. Results show that both annealing twins and strengthening precipitates profusely existing in the as-received specimen are dissolved at elevated temperatures during the laser irradiation. Meanwhile, in the melting zone(MZ), densities of low angle boundaries(LABs) are greatly increased with a large number of Laves phases preferentially distributed along such LABs. For different specimens, widths and depths of their MZs are found to be gradually reduced with decreasing the laser powers. Orientation analyses reveal that the columnar grains in the MZ of the 100 W specimen could inherit orientations existing in the matrix while lower laser powers promote the formation of more nuclei with scattered orientations to grow to be granular grains in the MZ. Hardness tests reveal that the MZs of all laser-treated specimens are softer than the matrix probably due to both precipitate dissolution and grain coarsening. 展开更多
关键词 Inconel 718 alloy grain boundaries pulsed laser surface treatment electron backscatter diffraction harchless
下载PDF
Microstructural Characterization of the Shear Bands in Fe-Cr-Ni Single Crystal by EBSD 被引量:1
17
作者 Huajie YANG J.H.Zhang +1 位作者 Yongbo XU Marc Andre' Meyers 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期819-828,共10页
An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscat... An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscatter diffraction-scanning electron microscopy), TEM (transmission electron in microscopy) and HREM (high- resolution electron microscopy). The results reveal that the propagation of the shear band exhibits an asymmetrical behavior arising from inhomogenous distribution in plasticity in the bands because of different resistance to the collapse in different crystallographic directions; The γ-ε-α′phase transformations may take place inside and outside the bands, and these martensitic phases currently nucleate at intersections either between the twins and deformation bands or between the twins and ε-sheet. Investigation by EBSD shows that recrystallization can occur in the bands with a grain size of an average of 0.2μm in diameter. These nano-grains are proposed to attribute to the results of either dynamic or static recrystallization, which can be described by the rotational recrystallization mechanism. Calculation and analysis indicate that the strain rate inside the shear band can reach 2.50×10^6 s^-1, which is higher, by two or three orders of magnitude, than that exerted dynamically on the specimen tested. 展开更多
关键词 High-strain rate deformation Adiabatic shear band electron backscatter diffraction (EBSD) RECRYSTALLIZATION Fe-Cr-Ni single crystal
下载PDF
Effects of fabrication methods on deformability and microstructure of Mg-Zn-Zr wrought alloy 被引量:1
18
作者 Ki Ho JUNG Yong Bae KIM +2 位作者 Geun An LEE Yuzheng ZHANG Byungmin AHN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第S1期68-74,共7页
The effects of fabrication processing methods on the workability of Mg-Zn-Zr wrought magnesium alloy(ZK60A) were investigated based on the microstructure and inherent internal defects. Three different billets, semi-co... The effects of fabrication processing methods on the workability of Mg-Zn-Zr wrought magnesium alloy(ZK60A) were investigated based on the microstructure and inherent internal defects. Three different billets, semi-continuously cast, semi-continuously cast and subsequently extruded, and die-cast, were fabricated and uniaxially compressed at elevated temperatures and two different strain rates to determine the deformation capabilities. The grain structure of the billets was investigated using electron backscatter diffraction(EBSD) and transmission electron microscopy(TEM). The internal defects were inspected by an X-ray scanner. The enhanced deformability was observed in semi-continuously cast billet compared to the one fabricated by conventional die-casting, and the subsequent extrusion further improved the deformability. 展开更多
关键词 MAGNESIUM continuous casting WORKABILITY electron backscatter diffraction(EBSD)
下载PDF
Microstructure and microtexture evolution of aluminum alloy 3003 under ultrasonic welding process for embedding SiC fibre 被引量:1
19
作者 朱政强 E.Ghassemieh 《China Welding》 EI CAS 2009年第4期6-9,共4页
Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matr... Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction ( EBSD ) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. 展开更多
关键词 electron backscatter diffraction ultrasonic metal welding AA3003
下载PDF
Effects of strain rate and temperature on microstructure and texture for AZ31 during uniaxial compression
20
作者 辛仁龙 汪炳叔 +2 位作者 周正 黄光杰 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期594-598,共5页
In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dim... In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dimension of d8 mm×12 mm.The samples were compressed using a Gleeble 1500D thermo-mechanical simulation machine at various strain rates(0.001,0.01,0.1,1 and 5 s- 1)and various temperatures(300,350,400 and 450℃).The microstructure and texture of the compressed samples at the same strain under different deformation conditions were studied and compared by electron backscatter diffraction(EBSD)in scanning electron microscope(SEM).The results show that the size of recrystallized grains in the deformed samples generally increases with the decrease of strain rate and the increase of temperature.After 50%reduction,most basal planes are aligned perpendicular to the compression direction at relatively high strain rate(>0.01 s- 1)or low temperature(<350℃).The optimized strain rate is 0.1 s- 1for uniaxial compression at 300℃,which produces about 80%of small grains(<5μm). 展开更多
关键词 magnesium alloy electron backscatter diffraction dynamic recrystallization microstructure TEXTURE
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部