Some parts with capillary to plate joint have important application in aerocrafi. Vacuum electron beam brazing (VEBB) technology is used to realize this jointing with capillaries. Firstly 3D finite element analysis ...Some parts with capillary to plate joint have important application in aerocrafi. Vacuum electron beam brazing (VEBB) technology is used to realize this jointing with capillaries. Firstly 3D finite element analysis model is built in this paper according to this special structure. And then ANSYS finite element analysis software is used to analyze brazing temperature field at different brazing parameters. The calculation results show that the temperature field of simulation has good agreement with that measured by experiment, which proves dependence of the model built in this paper. And also reference parameters could be provided for real brazing process through calculation in this model. Brazed joint of capiUary to plate with good performance is achieved using VEBB technology. The achievement of the study will be applied in aerocrafi in the future.展开更多
Based on full scale model of 1-beam and end-plate welding assembly with medium plate, welding temperature field and residual stress were simulated, infrared thermometers were employed to measure the real-time temperat...Based on full scale model of 1-beam and end-plate welding assembly with medium plate, welding temperature field and residual stress were simulated, infrared thermometers were employed to measure the real-time temperature Jbr verification purposes. Results show that the measured thermal cycle curves match well with the simulation result. Simulation results of welding residual stress indicate that the values of longitudinal and transverse stress on the upper surface of the plate are higher than the normal stress; higher tensile stresses exist at the end of the web weld toes and in the central area of the flange weld toes. The dangerous zones are located at the central areas of weld toes of the flange welds and near weld toes of the web welds.展开更多
The temperature and stress profiles of porous cubic Ti-6Al-4V titanium alloy grids by additive manufacturing via electron beam melting(EBM)based on finite element(FE)method were investigated.Three-dimensional FE model...The temperature and stress profiles of porous cubic Ti-6Al-4V titanium alloy grids by additive manufacturing via electron beam melting(EBM)based on finite element(FE)method were investigated.Three-dimensional FE models were developed to simulate the single-layer and five-layer girds under annular and lateral scanning.The results showed that the molten pool temperature in five-layer girds was higher than that in single-layer grids owing to the larger mass and higher heat capacity.More energies accumulated by the longer scanning time for annular path than lateral path led to the higher temperature and steeper temperature gradient.The thermal stress drastically fluctuated during EBM process and the residual stress decreased with the increase of powder layer where the largest stress appeared at the first layer along the build direction.The stress under lateral scanning was slightly larger but relatively more homogeneous distribution than those under annular scanning.The stress distribution showed anisotropy and the maximum Von Mises stress occurred around the central node.The stress profiles were explained by the temperature fields and grids structure.展开更多
The stochastic finite element equations for random temperature are obtained using the first-order per-turbation technique taking into account the random thermal properties and boundary condition, based on heat transfe...The stochastic finite element equations for random temperature are obtained using the first-order per-turbation technique taking into account the random thermal properties and boundary condition, based on heat transfer variational principle. The local average method for 2-D is used to discretize random fields. Then, the random temperature fields of embankment in cold regions are investigated on condi-tion that the thermal properties and boundary condition are taken as random fields, respectively, by using the program, which is written by the methods. The expected value of temperature field and the standard deviation of the temperature field of embankment in cold regions are obtained and analyzed.展开更多
为研究全封闭扇冷式(totally enclosed fan-cool,TEFC)感应电机额定负载运行时的温度场,以一台55 k W异步电机为例,运用等效方法对电机实际结构进行简化处理,通过绝缘等效手段建立了实际绕组等效模型,进而建立了电机温度场仿真计算模型...为研究全封闭扇冷式(totally enclosed fan-cool,TEFC)感应电机额定负载运行时的温度场,以一台55 k W异步电机为例,运用等效方法对电机实际结构进行简化处理,通过绝缘等效手段建立了实际绕组等效模型,进而建立了电机温度场仿真计算模型,基于导热学基本定律及稳态热传导方程,采用有限元法对其进行稳态温度场计算。计算过程中,通过采用电机内冷却介质等效导热系数的方法解决了转子旋转以及电机内空气流动的问题;得到了电机各结构件的温升分布特性;对定子铁心不同位置的温升情况进行了细致研究,分析了转子内部温升分布情况,并对单根绕组的温升以及绕组周向的温升差异进行了数值分析,对样机进行了实验测试,将计算结果与实验结果进行对比,验证了计算方法的准确性。展开更多
文摘Some parts with capillary to plate joint have important application in aerocrafi. Vacuum electron beam brazing (VEBB) technology is used to realize this jointing with capillaries. Firstly 3D finite element analysis model is built in this paper according to this special structure. And then ANSYS finite element analysis software is used to analyze brazing temperature field at different brazing parameters. The calculation results show that the temperature field of simulation has good agreement with that measured by experiment, which proves dependence of the model built in this paper. And also reference parameters could be provided for real brazing process through calculation in this model. Brazed joint of capiUary to plate with good performance is achieved using VEBB technology. The achievement of the study will be applied in aerocrafi in the future.
基金This research was supported by the National Natural Science Foundation of China (51171093).
文摘Based on full scale model of 1-beam and end-plate welding assembly with medium plate, welding temperature field and residual stress were simulated, infrared thermometers were employed to measure the real-time temperature Jbr verification purposes. Results show that the measured thermal cycle curves match well with the simulation result. Simulation results of welding residual stress indicate that the values of longitudinal and transverse stress on the upper surface of the plate are higher than the normal stress; higher tensile stresses exist at the end of the web weld toes and in the central area of the flange weld toes. The dangerous zones are located at the central areas of weld toes of the flange welds and near weld toes of the web welds.
基金The work was financially supported by the Natural Science Foundation of Shandong Province,China(No.ZR2019MEM012)the Major Scientific and Technological Innovation Program of Shandong Province,China(No.2019JZZY010325)+1 种基金the Key Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-JSC031-02)the National Natural Science Foundation of China(No.51871220).
文摘The temperature and stress profiles of porous cubic Ti-6Al-4V titanium alloy grids by additive manufacturing via electron beam melting(EBM)based on finite element(FE)method were investigated.Three-dimensional FE models were developed to simulate the single-layer and five-layer girds under annular and lateral scanning.The results showed that the molten pool temperature in five-layer girds was higher than that in single-layer grids owing to the larger mass and higher heat capacity.More energies accumulated by the longer scanning time for annular path than lateral path led to the higher temperature and steeper temperature gradient.The thermal stress drastically fluctuated during EBM process and the residual stress decreased with the increase of powder layer where the largest stress appeared at the first layer along the build direction.The stress under lateral scanning was slightly larger but relatively more homogeneous distribution than those under annular scanning.The stress distribution showed anisotropy and the maximum Von Mises stress occurred around the central node.The stress profiles were explained by the temperature fields and grids structure.
基金the "National Science Fund of Distinguished Young Scholars of China" (Grant No. 40225001)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-351)+3 种基金the CAS Special Fund for the National Excellent PhD Dissertation Author (to Dr. Lai, Y.M.)the Foundation of "Hundred People Plan" of Chinese Academy of Sciences (to Dr. Lai Y M)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX1-SW-04)the National Natural Science Foundation of China (Grant No. 40640420072)
文摘The stochastic finite element equations for random temperature are obtained using the first-order per-turbation technique taking into account the random thermal properties and boundary condition, based on heat transfer variational principle. The local average method for 2-D is used to discretize random fields. Then, the random temperature fields of embankment in cold regions are investigated on condi-tion that the thermal properties and boundary condition are taken as random fields, respectively, by using the program, which is written by the methods. The expected value of temperature field and the standard deviation of the temperature field of embankment in cold regions are obtained and analyzed.
文摘为研究全封闭扇冷式(totally enclosed fan-cool,TEFC)感应电机额定负载运行时的温度场,以一台55 k W异步电机为例,运用等效方法对电机实际结构进行简化处理,通过绝缘等效手段建立了实际绕组等效模型,进而建立了电机温度场仿真计算模型,基于导热学基本定律及稳态热传导方程,采用有限元法对其进行稳态温度场计算。计算过程中,通过采用电机内冷却介质等效导热系数的方法解决了转子旋转以及电机内空气流动的问题;得到了电机各结构件的温升分布特性;对定子铁心不同位置的温升情况进行了细致研究,分析了转子内部温升分布情况,并对单根绕组的温升以及绕组周向的温升差异进行了数值分析,对样机进行了实验测试,将计算结果与实验结果进行对比,验证了计算方法的准确性。