Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental com...Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental compatibility,the range of coating materials and application properties. Physical vapor deposition(PVD) is an environment-friendly technology and enables nearly unlimited material and process variety.Electron beam high-rate evaporation with deposition rates up to some micrometers per second is the most productive PVD technology for low cost coating.The combination of evaporation with powerful plasma is an efficient way to improve the layer properties.The developed plasma sources can be used for special plasma enhanced chemical vapor deposition(PECVD) processes too. The paper gives an overview about the latest developments in these technologies.Furthermore,the paper explains some examples of new layer stacks onto steel strips.While enhanced corrosion protection can be obtained by magnesium,aluminium or copper containing coatings other functional surface properties come more and more in the focus of interest.For instance,decorative gold colored layers,transparent scratch resistant layers,hard coatings and photo catalytic layers were deposited on running steel strips.Functional layers and layer systems for energy saving and sun energy absorption by solar thermal effects and photo voltaics are under development.The coatings are prepared under the conditions of very high deposition rates using our in-line vacuum coater for metallic strips and sheets with the name MAXI.The influence of the process and plasma parameters on the layer properties were investigated and will be demonstrated for some applications.展开更多
A new method was developed based on the electron beam vacuum dispersion(EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The ne...A new method was developed based on the electron beam vacuum dispersion(EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating's thickness was designed for the new EBVD equipment according to the quartz crystal microbalance(QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder(purity ≥ 99.99%)as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy(SEM), the structure of the PTFE polymer coating's column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating.展开更多
文摘Vapor deposited coatings onto strip steel are a promising alternative as functional layers for corrosion protection or high abrasion resistance.Conventional coating systems have some limits regarding environmental compatibility,the range of coating materials and application properties. Physical vapor deposition(PVD) is an environment-friendly technology and enables nearly unlimited material and process variety.Electron beam high-rate evaporation with deposition rates up to some micrometers per second is the most productive PVD technology for low cost coating.The combination of evaporation with powerful plasma is an efficient way to improve the layer properties.The developed plasma sources can be used for special plasma enhanced chemical vapor deposition(PECVD) processes too. The paper gives an overview about the latest developments in these technologies.Furthermore,the paper explains some examples of new layer stacks onto steel strips.While enhanced corrosion protection can be obtained by magnesium,aluminium or copper containing coatings other functional surface properties come more and more in the focus of interest.For instance,decorative gold colored layers,transparent scratch resistant layers,hard coatings and photo catalytic layers were deposited on running steel strips.Functional layers and layer systems for energy saving and sun energy absorption by solar thermal effects and photo voltaics are under development.The coatings are prepared under the conditions of very high deposition rates using our in-line vacuum coater for metallic strips and sheets with the name MAXI.The influence of the process and plasma parameters on the layer properties were investigated and will be demonstrated for some applications.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2013AA030901)
文摘A new method was developed based on the electron beam vacuum dispersion(EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating's thickness was designed for the new EBVD equipment according to the quartz crystal microbalance(QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder(purity ≥ 99.99%)as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy(SEM), the structure of the PTFE polymer coating's column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating.