Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar...Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.展开更多
Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulatio...Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.展开更多
基金the National Key Research and Development Program of China(Grant No.2022YFA1604600)the National Natural Science Foundation of China(NSFC,Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000).
文摘Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.
基金Project supported by the National Natural Science of China(Grant Nos.41527804 and 41774169)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJSSW-DQC010).
文摘Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.