期刊文献+
共找到1,280篇文章
< 1 2 64 >
每页显示 20 50 100
Local coordination and electronic interactions of Pd/MXene via dual‐atom codoping with superior durability for efficient electrocatalytic ethanol oxidation
1
作者 Zhangxin Chen Fan Jing +7 位作者 Minghui Luo Xiaohui Wu Haichang Fu Shengwei Xiao Binbin Yu Dan Chen Xianqiang Xiong Yanxian Jin 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期166-177,共12页
Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin... Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies. 展开更多
关键词 DURABILITY electronic interactions ethanol oxidation heteroatom codoping Pd/MXene
下载PDF
Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy
2
作者 Bowen Guo Zekun Wang +3 位作者 Lei Zheng Guang Mo Hongjun Zhou Dan Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期156-171,共16页
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut... Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures. 展开更多
关键词 biomimetic self-assembly support electronic metal-support interactions oxygen evolution reaction single atoms catalysts
下载PDF
Capturing the non-equilibrium state in light–matter–free-electron interactions through ultrafast transmission electron microscopy
3
作者 汪文韬 孙帅帅 +5 位作者 李俊 郑丁国 黄思远 田焕芳 杨槐馨 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期88-101,共14页
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact... Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams. 展开更多
关键词 ultrafast transmission electron microscopy non-equilibrium structural dynamics photo-induced phase transition free-electron–photon interactions
下载PDF
Strong metal–support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride 被引量:1
4
作者 Xin Wang Xiaoli Yang +7 位作者 Guangxian Pei Jifa Yang Junzhe Liu Fengwang Zhao Fayi Jin Wei Jiang Haoxi Ben Lixue Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期245-254,共10页
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr... Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering. 展开更多
关键词 electronic structure hydrogen evolution reaction RUTHENIUM strong metal-support interaction titanium nitride
下载PDF
Skin‑Inspired Ultra‑Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human–Machine Interaction 被引量:1
5
作者 Kun Chen Kewei Liang +4 位作者 He Liu Ruonan Liu Yiying Liu Sijia Zeng Ye Tian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期1-19,共19页
Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tu... Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method.The gelling agent(β-Glycerophosphate sodium:Gp)induces the aggregation and binding of PVA molecular chains and thereby toughens them(stress up to 5.79 MPa,toughness up to 13.96 MJ m^(−3)).Notably,due to molecular self-assembly,hydrogels can be fully recycled and reprocessed by direct heating(100°C for a few seconds),and the tensile strength can still be maintained at about 100%after six recoveries.The hydrogel integrates transparency(>60%),super toughness(up to 13.96 MJ m^(−3),bearing 1500 times of its own tensile weight),good antibacterial properties(E.coli and S.aureus),UV protection(Filtration:80%–90%),high electrical conductivity(4.72 S m^(−1)),anti-swelling and recyclability.The hydrogel can not only monitor daily physiological activities,but also be used for complex activities underwater and message encryption/decryption.We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user’s health status.Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical,human–machine interaction,VR/AR and the metaverse fields. 展开更多
关键词 Ultra-tough hydrogel SUPRAMOLECULAR Flexible electronics Knuckle training Human-machine interaction
下载PDF
Electron Momentum Spectroscopy of Valence Orbitals of n-Propyl Iodide: Spin-Orbit Coupling Effect and Intramolecular Orbital Interaction
6
作者 王恩亮 史钰峰 +3 位作者 单旭 阳弘江 张卫 陈向军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期503-511,I0003,共10页
The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric ... The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule. 展开更多
关键词 n-Propyl iodide electron momentum spectroscopy Spin-orbit coupling effect Intramolecular orbital interaction
下载PDF
Effects of electron–optical phonon interactions on the polaron energy in a wurtzite ZnO/Mg_xZn_(1-x)O quantum well 被引量:3
7
作者 赵凤岐 张敏 白金花 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期448-453,共6页
We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contribution... We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail. 展开更多
关键词 wurtzite quantum well electron–optical phonon interaction polaron energy
下载PDF
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:1
8
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
下载PDF
Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane 被引量:7
9
作者 Xiaoying Sun Meijun Liu +2 位作者 Yaoyao Huang Bo Li Zhen Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期819-825,共7页
The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of sin... The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of single Pt atom supported on vacancies in a boron nitride nanosheet.Moreover,the relation between the EMSI and the performance of Pt in propane direct dehydrogenation(PDH)is investigated in detail.The charge state and partial density of states of single Pt atom show distinct features at different anchoring positions,such as boron and nitrogen vacancies(Bvac and Nvac,respectively).Single Pt atom become positively and negatively charged on Bvac and Nvac,respectively.Therefore,the electronic structure of Pt can be adjusted by rational deposition on the support.Moreover,Pt atoms in different charge states have been shown to have different catalytic abilities in PDH.The DFT calculations reveal that Pt atoms on Bvac(Pt-Bvac)have much higher reactivity towards reactant/product adsorption and C–H bond activation than Pt supported on Nvac(Pt-Nvac),with larger adsorption energy and lower barrier along the reaction pathway.However,the high reactivity of Pt-Bvac also hinders propene desorption,which could lead to unwanted deep dehydrogenation.Therefore,the results obtained herein suggest that a balanced reactivity for C–H activation in propane and propene desorption is required to achieve optimum yields.Based on this descriptor,a single Pt atom on a nitrogen vacancy is considered an effective catalyst for PDH.Furthermore,the deep dehydrogenation of the formed propene is significantly suppressed,owing to the large barrier on Pt-Nvac.The current work demonstrates that the catalytic properties of supported single Pt atoms can be tuned by rationally depositing them on a boron nitride nanosheet and highlights the great potential of single-atom catalysis in the PDH reaction. 展开更多
关键词 PROPANE Direct dehydrogenation Platinum Boron nitride Single atom catalysis Density functional theory electronic metel-support interaction
下载PDF
Storm-Time Evolution of Energetic Electron Pitch Angle Distributions by Wave-Particle Interaction 被引量:1
10
作者 肖伏良 贺慧勇 +2 位作者 周庆华 伍冠洪 史向华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第1期27-29,共3页
The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations fo... The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitchangles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4. 展开更多
关键词 wave-particle interaction pitch-angle scattering whistler waves energetic electrons
下载PDF
Superthermal Electron Produced in Relativistic Laser-Plasma Interaction 被引量:1
11
作者 CHEN Bao-Zhen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第7期89-90,共2页
The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calcula... The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calculated. It is found that the calculated temperature fits the first temperature observed in the experiment by Malka et al. A model to evaluate the electron temperature by taking the electron-ion scattering into account is proposed. It is found that when I ≥ 4.0 × 101s W/cm2 the electron temperature by considering the scattering, T hs, is evidently larger than the electron temperature without considering the scattering, Th. This result is in favor of explaining the two-temperature distribution of the electron energy observed in the experiment by Malka et al. 展开更多
关键词 two-temperature DISTRIBUTION of superthermal electron energy RELATIVISTIC LASER-PLASMA interaction
下载PDF
Ultrafast Electron Transfer in All-Small-Molecule Photovoltaic Blends Promoted by Intermolecular Interactions in Cyanided Donors 被引量:1
12
作者 Guo-dong Wang Zhi-xing Liu +7 位作者 Bei-bei Qiu Zhi-guo Zhang Rui Wang Xiao-yong Wang Jing Ma Yong-fang Li Min Xiao Chun-feng Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期751-760,I0002,I0031-I0052,共33页
Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation re... Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored.Here,we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors.The delocalized excitations,arising from intermolecular interaction in the moiety of cyano-substituted donor,undergo ultrafast electron transfer with a lifetime of∼3 ps in the blend.In contrast,some locally excited states,surviving in the film of donor without cyano substitution,are not actively involved in the charge separation.These findings well explain the performance improvement of devices with cyanided donors,suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization. 展开更多
关键词 electron transfer Organic solar cells Charge-transfer interaction
下载PDF
The Interactions between Electrons and Phonons in Bonded Elements 被引量:7
13
作者 Yu Chen Xinmin Huang Jianwu Wang 《材料科学与工程(中英文B版)》 2011年第2期227-231,共5页
关键词 相互作用 矩阵元素 电子 声子 过渡元素 化学键 债券 离子
下载PDF
Influence of Characteristics of Substance on Parameters of Interaction of Photons High Energy with Free Electrons 被引量:1
14
作者 Andrey N. Volobuev Eugene S. Petrov 《Journal of Modern Physics》 2011年第12期1443-1449,共7页
Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coher... Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coherent and not coherent scattering of photons, a stop electron after interaction with a photon. Dependence of change of length of a wave of a photon after interaction with electron from parameters of substance and speed of movement electron is found. 展开更多
关键词 PHOTONS electronS interaction Not COHERENT Scattering COMPTON Effect Substance
下载PDF
Investigating the occurrence and predictability of pitch angle scattering events at ADITYA-Upgrade tokamak with the electron cyclotron emission radiometer
15
作者 Varsha SIJU Santosh P.PANDYA +9 位作者 S.K.PATHAK Ansh PATEL Umesh NAGORA Shishir PUROHIT Sameer JHA M.K.GUPTA K.TAHILIANI R.KUMAR R.L.TANNA J.GHOSH 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期45-57,共13页
This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upg... This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upgrade(ADITYA-U) tokamak. For low-density discharges at ADITYA-U, a sudden abnormal rise is observed in the ECE signature while other plasma parameters are unchanged. Investigations are done to understand this abrupt rise that is expected to occur due to PAS. The rise time is as fast as 100 μs with a single step and/or multiple step rise in ECE radiometer measurements. This event is known to limit the on-axis energy of runaway electrons. Being a repetitive event, the conditions of its repetitive occurrence can be investigated, thereby exploring the possibility of it being triggered and surveyed as an alternate runaway electron mitigation plan. Functional parameterization of such events with other discharge parameters is obtained and the possibility to trigger these events is discussed.PREDICT code is used to investigate the possible interpretations for the PAS occurrence through modeling and supporting the ECE observations. The trigger values so obtained experimentally are set as input criteria for PAS occurrence. Preliminary modeling investigations provide reliable consistency with the findings. 展开更多
关键词 pitch angle scattering anomalous Doppler resonance electron cyclotron emission radiometer diagnostic runaway electrons wave-particle interaction
下载PDF
Generation and regulation of electromagnetic pulses generated by femtosecond lasers interacting with multitargets
16
作者 Ya-Dong Xia De-Feng Kong +14 位作者 Qiang-You He Zhen Guo Dong-Jun Zhang Tong Yang Hao Cheng Yu-Ze Li Yang Yan Xiao Liang Ping Zhu Xing-Long Xie Jian-Qiang Zhu Ting-Shuai Li Chen Lin Wen-Jun Ma Xue-Qing Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期96-107,共12页
Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(... Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design. 展开更多
关键词 Electromagnetic pulses Laser plasma interaction Electromagnetic shielding electron distribution
下载PDF
Interfacial Electronic Modulation of Dual-Monodispersed Pt–Ni_(3)S_(2) as Efficacious Bi-Functional Electrocatalysts for Concurrent H_(2) Evolution and Methanol Selective Oxidation
17
作者 Qianqian Zhao Bin Zhao +7 位作者 Xin Long Renfei Feng Mohsen Shakouri Alisa Paterson Qunfeng Xiao Yu Zhang Xian‑Zhu Fu Jing‑Li Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期415-431,共17页
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop... Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability. 展开更多
关键词 Dual-monodispersed heterostructure electronic interactive modulation Reaction mechanism Methanol oxidation reaction Hydrogen generation
下载PDF
Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures
18
作者 Qiang Liu Wei Xu +7 位作者 Xiaoxi Li Tongyao Zhang Chengbing Qin Fang Luo Zhihong Zhu Shiqiao Qin Mengjian Zhu Kostya S Novoselov 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期328-338,共11页
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g... Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators. 展开更多
关键词 suspended graphene ultrafast light emitter van der Waals heterostructures thermal radiation electron–phonon interaction
下载PDF
Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
19
作者 卢光伟 李曜均 +5 位作者 胡曦辰 陈思宇 徐豪 祝铭阳 闫文超 陈黎明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期363-368,共6页
The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi... The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source. 展开更多
关键词 relativistic electron beams acceleration by laser–plasma interactions finite element analysis
下载PDF
Electron Interaction Among the Noncovalently Engineered Graphene-methylene Blue Nanocomposites
20
作者 LI Zhi SHI Xiao-jun +5 位作者 GE Xue-ping WEI Jian-jun YANG Cun-zhong FANG Bin XIE Hai-fen AN Xing-cai 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第3期520-523,共4页
The electron interaction among the noncovalently engineered graphene-methylene blue(MB) nanocompo- site with a dipolar pull-push hybrid model was studied. The π-π interaction between reduced graphene oxide(rGO) ... The electron interaction among the noncovalently engineered graphene-methylene blue(MB) nanocompo- site with a dipolar pull-push hybrid model was studied. The π-π interaction between reduced graphene oxide(rGO) and MB molecule was studied by 1HNMR spectroscopy. The electrochemical investigation indicates MB has a stronger electron transfer interaction with rGO than with GO. The ability of graphene-MB nanocomposites to undergo photoinduced electron transfer was confirmed from the capability of the nanocomposites coated electrode to generate photocurrent in a photoelectrochemical cell. The role of graphene as electron acceptor in the opto-electronic assembly was discussed. 展开更多
关键词 GRAPHENE Methylene blue electron interaction PHOTOCURRENT
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部