Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin...Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.展开更多
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut...Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr...Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.展开更多
Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tu...Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method.The gelling agent(β-Glycerophosphate sodium:Gp)induces the aggregation and binding of PVA molecular chains and thereby toughens them(stress up to 5.79 MPa,toughness up to 13.96 MJ m^(−3)).Notably,due to molecular self-assembly,hydrogels can be fully recycled and reprocessed by direct heating(100°C for a few seconds),and the tensile strength can still be maintained at about 100%after six recoveries.The hydrogel integrates transparency(>60%),super toughness(up to 13.96 MJ m^(−3),bearing 1500 times of its own tensile weight),good antibacterial properties(E.coli and S.aureus),UV protection(Filtration:80%–90%),high electrical conductivity(4.72 S m^(−1)),anti-swelling and recyclability.The hydrogel can not only monitor daily physiological activities,but also be used for complex activities underwater and message encryption/decryption.We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user’s health status.Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical,human–machine interaction,VR/AR and the metaverse fields.展开更多
The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric ...The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.展开更多
We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contribution...We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.展开更多
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ...Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.展开更多
The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of sin...The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of single Pt atom supported on vacancies in a boron nitride nanosheet.Moreover,the relation between the EMSI and the performance of Pt in propane direct dehydrogenation(PDH)is investigated in detail.The charge state and partial density of states of single Pt atom show distinct features at different anchoring positions,such as boron and nitrogen vacancies(Bvac and Nvac,respectively).Single Pt atom become positively and negatively charged on Bvac and Nvac,respectively.Therefore,the electronic structure of Pt can be adjusted by rational deposition on the support.Moreover,Pt atoms in different charge states have been shown to have different catalytic abilities in PDH.The DFT calculations reveal that Pt atoms on Bvac(Pt-Bvac)have much higher reactivity towards reactant/product adsorption and C–H bond activation than Pt supported on Nvac(Pt-Nvac),with larger adsorption energy and lower barrier along the reaction pathway.However,the high reactivity of Pt-Bvac also hinders propene desorption,which could lead to unwanted deep dehydrogenation.Therefore,the results obtained herein suggest that a balanced reactivity for C–H activation in propane and propene desorption is required to achieve optimum yields.Based on this descriptor,a single Pt atom on a nitrogen vacancy is considered an effective catalyst for PDH.Furthermore,the deep dehydrogenation of the formed propene is significantly suppressed,owing to the large barrier on Pt-Nvac.The current work demonstrates that the catalytic properties of supported single Pt atoms can be tuned by rationally depositing them on a boron nitride nanosheet and highlights the great potential of single-atom catalysis in the PDH reaction.展开更多
The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations fo...The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitchangles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.展开更多
The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calcula...The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calculated. It is found that the calculated temperature fits the first temperature observed in the experiment by Malka et al. A model to evaluate the electron temperature by taking the electron-ion scattering into account is proposed. It is found that when I ≥ 4.0 × 101s W/cm2 the electron temperature by considering the scattering, T hs, is evidently larger than the electron temperature without considering the scattering, Th. This result is in favor of explaining the two-temperature distribution of the electron energy observed in the experiment by Malka et al.展开更多
Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation re...Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored.Here,we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors.The delocalized excitations,arising from intermolecular interaction in the moiety of cyano-substituted donor,undergo ultrafast electron transfer with a lifetime of∼3 ps in the blend.In contrast,some locally excited states,surviving in the film of donor without cyano substitution,are not actively involved in the charge separation.These findings well explain the performance improvement of devices with cyanided donors,suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization.展开更多
Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coher...Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coherent and not coherent scattering of photons, a stop electron after interaction with a photon. Dependence of change of length of a wave of a photon after interaction with electron from parameters of substance and speed of movement electron is found.展开更多
This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upg...This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upgrade(ADITYA-U) tokamak. For low-density discharges at ADITYA-U, a sudden abnormal rise is observed in the ECE signature while other plasma parameters are unchanged. Investigations are done to understand this abrupt rise that is expected to occur due to PAS. The rise time is as fast as 100 μs with a single step and/or multiple step rise in ECE radiometer measurements. This event is known to limit the on-axis energy of runaway electrons. Being a repetitive event, the conditions of its repetitive occurrence can be investigated, thereby exploring the possibility of it being triggered and surveyed as an alternate runaway electron mitigation plan. Functional parameterization of such events with other discharge parameters is obtained and the possibility to trigger these events is discussed.PREDICT code is used to investigate the possible interpretations for the PAS occurrence through modeling and supporting the ECE observations. The trigger values so obtained experimentally are set as input criteria for PAS occurrence. Preliminary modeling investigations provide reliable consistency with the findings.展开更多
Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(...Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.展开更多
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop...Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.展开更多
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g...Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.展开更多
The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi...The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.展开更多
The electron interaction among the noncovalently engineered graphene-methylene blue(MB) nanocompo- site with a dipolar pull-push hybrid model was studied. The π-π interaction between reduced graphene oxide(rGO) ...The electron interaction among the noncovalently engineered graphene-methylene blue(MB) nanocompo- site with a dipolar pull-push hybrid model was studied. The π-π interaction between reduced graphene oxide(rGO) and MB molecule was studied by 1HNMR spectroscopy. The electrochemical investigation indicates MB has a stronger electron transfer interaction with rGO than with GO. The ability of graphene-MB nanocomposites to undergo photoinduced electron transfer was confirmed from the capability of the nanocomposites coated electrode to generate photocurrent in a photoelectrochemical cell. The role of graphene as electron acceptor in the opto-electronic assembly was discussed.展开更多
基金Key Research and Development Program of Zhejiang,Grant/Award Number:2021C03022National Natural Science Foundation of China,Grant/Award Numbers:22002104,22272115,22202145,22202146,22102112,22202147。
文摘Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.
基金The work was supported by the National Natural Science Foundation of China(52372174)Carbon Neutrality Research Institute Fund(CNIF20230204)Special Project of Strategic Cooperation between China National Petroleum Corporation and China University of Petroleum(Beijing)(ZLZX-2020-04).
文摘Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.22075159,22002066)Shandong Taishan Scholars Project(Grant Nos.ts20190932,tsqn202103058)+1 种基金Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials(Grant No.202203404)Postdoctoral Applied Research Project in Qingdao,and the Youth Innovation Team Project of Shandong Provincial Education Department(Grant No.2019KJC023).
文摘Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering.
基金support from the National Natural Science Foundation of China(32201179)Guangdong Basic and Applied Basic Research Foundation(2020A1515110126 and 2021A1515010130)the Fundamental Research Funds for the Central Universities(N2119006 and N2224001-10)is gratefully acknowledged.
文摘Multifunctional supramolecular ultra-tough bionic e-skin with unique durability for human–machine interaction in complex scenarios still remains challenging.Herein,we develop a skininspired ultra-tough e-skin with tunable mechanical properties by a physical cross-linking salting-freezing-thawing method.The gelling agent(β-Glycerophosphate sodium:Gp)induces the aggregation and binding of PVA molecular chains and thereby toughens them(stress up to 5.79 MPa,toughness up to 13.96 MJ m^(−3)).Notably,due to molecular self-assembly,hydrogels can be fully recycled and reprocessed by direct heating(100°C for a few seconds),and the tensile strength can still be maintained at about 100%after six recoveries.The hydrogel integrates transparency(>60%),super toughness(up to 13.96 MJ m^(−3),bearing 1500 times of its own tensile weight),good antibacterial properties(E.coli and S.aureus),UV protection(Filtration:80%–90%),high electrical conductivity(4.72 S m^(−1)),anti-swelling and recyclability.The hydrogel can not only monitor daily physiological activities,but also be used for complex activities underwater and message encryption/decryption.We also used it to create a complete finger joint rehabilitation system with an interactive interface that dynamically presents the user’s health status.Our multifunctional electronic skin will have a profound impact on the future of new rehabilitation medical,human–machine interaction,VR/AR and the metaverse fields.
文摘The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11264027 and 11364030)the Project of Prairie Excellent Specialist of Inner Mongolia,Chinathe "Thousand,Hundred and Ten" Talent Training Project Foundation of Inner Mongolia Normal University,China(Grant No.RCPY-2-2012-K-039)
文摘We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.
基金supported by the National Natural Science Foundation of China(52363028,21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.
基金supported by the National Science Foundation of China(91545117)the Natural Science Foundation of Liaoning Province(201602676)+1 种基金the Fundamental Research Funds for Colleges and Universities in Liaoning Province(LQN201703)the Startup Foundation for Doctors of Shenyang Normal University(BS201620)~~
文摘The electronic metal-support interaction(EMSI)is one of most intriguing phenomena in heterogeneous catalysis.In this work,this subtle effect is clearly demonstrated by density functional theory(DFT)calculations of single Pt atom supported on vacancies in a boron nitride nanosheet.Moreover,the relation between the EMSI and the performance of Pt in propane direct dehydrogenation(PDH)is investigated in detail.The charge state and partial density of states of single Pt atom show distinct features at different anchoring positions,such as boron and nitrogen vacancies(Bvac and Nvac,respectively).Single Pt atom become positively and negatively charged on Bvac and Nvac,respectively.Therefore,the electronic structure of Pt can be adjusted by rational deposition on the support.Moreover,Pt atoms in different charge states have been shown to have different catalytic abilities in PDH.The DFT calculations reveal that Pt atoms on Bvac(Pt-Bvac)have much higher reactivity towards reactant/product adsorption and C–H bond activation than Pt supported on Nvac(Pt-Nvac),with larger adsorption energy and lower barrier along the reaction pathway.However,the high reactivity of Pt-Bvac also hinders propene desorption,which could lead to unwanted deep dehydrogenation.Therefore,the results obtained herein suggest that a balanced reactivity for C–H activation in propane and propene desorption is required to achieve optimum yields.Based on this descriptor,a single Pt atom on a nitrogen vacancy is considered an effective catalyst for PDH.Furthermore,the deep dehydrogenation of the formed propene is significantly suppressed,owing to the large barrier on Pt-Nvac.The current work demonstrates that the catalytic properties of supported single Pt atoms can be tuned by rationally depositing them on a boron nitride nanosheet and highlights the great potential of single-atom catalysis in the PDH reaction.
基金National Natural Science Foundation of China(Nos.40774078,40404012,40674076,40474064)the Visiting Scholar Foundation of State Key Laboratory of Space Weather,Chinese Academy of Sciences
文摘The quasi-pure pitch-angle scattering of energetic electrons driven by field-aligned propagating whistler mode waves during the 9~15 October 1990 magnetic storm at L≈ 3 ~ 4 is studied, and numerical calculations for energetic electrons in gyroresonance with a band of frequency of whistler mode waves distributed over a standard Gaussian spectrum is performed. It is found that the whistler mode waves can efficiently drive energetic electrons from the larger pitchangles into the loss cone, and lead to a flat-top distribution during the main phase of geomagnetic storms. This result perhaps presents a feasible interpretation for observation of time evolution of the quasi-isotropic pitch-angle distribution by Combined Release and Radiation Effects Satellite (CRRES) spacecraft at L ≈ 3 ~ 4.
文摘The dynamics of a relativistic electron submitted to an intense, plane wave, linearly polarized laser field is reviewed. Based on the dynamics, the temperature of the electron in the laser field is delined and calculated. It is found that the calculated temperature fits the first temperature observed in the experiment by Malka et al. A model to evaluate the electron temperature by taking the electron-ion scattering into account is proposed. It is found that when I ≥ 4.0 × 101s W/cm2 the electron temperature by considering the scattering, T hs, is evidently larger than the electron temperature without considering the scattering, Th. This result is in favor of explaining the two-temperature distribution of the electron energy observed in the experiment by Malka et al.
基金supported by the National Key R&D Program of China(No.2018YFA0209100 and No.2017YFA0303703)the National Natural Science Foundation of China(No.21922302,No.21873047,No.91850105,and No.91833305)+1 种基金the Fundamental Research Funds for the Central Universities(No.020414380126)Chun-feng Zhang acknowledges financial support from the Tang Scholar Program。
文摘Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored.Here,we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors.The delocalized excitations,arising from intermolecular interaction in the moiety of cyano-substituted donor,undergo ultrafast electron transfer with a lifetime of∼3 ps in the blend.In contrast,some locally excited states,surviving in the film of donor without cyano substitution,are not actively involved in the charge separation.These findings well explain the performance improvement of devices with cyanided donors,suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization.
文摘Various variants of interaction of photons high energy with free electrons in substance are investigated. It is shown, that among these variants, in substance can be observed: absorption of a photon by electron, coherent and not coherent scattering of photons, a stop electron after interaction with a photon. Dependence of change of length of a wave of a photon after interaction with electron from parameters of substance and speed of movement electron is found.
文摘This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upgrade(ADITYA-U) tokamak. For low-density discharges at ADITYA-U, a sudden abnormal rise is observed in the ECE signature while other plasma parameters are unchanged. Investigations are done to understand this abrupt rise that is expected to occur due to PAS. The rise time is as fast as 100 μs with a single step and/or multiple step rise in ECE radiometer measurements. This event is known to limit the on-axis energy of runaway electrons. Being a repetitive event, the conditions of its repetitive occurrence can be investigated, thereby exploring the possibility of it being triggered and surveyed as an alternate runaway electron mitigation plan. Functional parameterization of such events with other discharge parameters is obtained and the possibility to trigger these events is discussed.PREDICT code is used to investigate the possible interpretations for the PAS occurrence through modeling and supporting the ECE observations. The trigger values so obtained experimentally are set as input criteria for PAS occurrence. Preliminary modeling investigations provide reliable consistency with the findings.
基金This work was supported by the National Natural Science Foundation of China(Nos.12122501,11975037,61631001,and 11921006)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404)the Foundation of Science and Technology on Plasma Physics Laboratory(No.6142A04220108).
文摘Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.
基金the financial support of Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515010940)Shenzhen Natural Science Fund (the Stable Support Plan Program No. 20220809160022001)the Shenzhen Science and Technology Programs (No. ZDSYS20220527171401003, KQTD20190929173914967)。
文摘Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.
基金supported by the National Natural Science Foundation of China(Nos.12174444 and 52202195)the Natural Science Foundation of Hunan Province(2020RC3032)。
文摘Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1601700)the National Natural Science Foundation of China (Grant Nos. 12074251, 11991073, 12335016, 12305272, and 12105174)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25000000 and XDA25030400)Yangyang Development Fund,China。
文摘The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source.
文摘The electron interaction among the noncovalently engineered graphene-methylene blue(MB) nanocompo- site with a dipolar pull-push hybrid model was studied. The π-π interaction between reduced graphene oxide(rGO) and MB molecule was studied by 1HNMR spectroscopy. The electrochemical investigation indicates MB has a stronger electron transfer interaction with rGO than with GO. The ability of graphene-MB nanocomposites to undergo photoinduced electron transfer was confirmed from the capability of the nanocomposites coated electrode to generate photocurrent in a photoelectrochemical cell. The role of graphene as electron acceptor in the opto-electronic assembly was discussed.