期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Electron Microscopy Analysis of Deformation Induced ε Martensite Transformation in an Fe-Mn-Si-Cr-Ni Alloy
1
作者 Fuxing YIN Jianxin ZHANG Ruixiang WANG and Nanju GU (Hebei Institute of Technology, Tianjin, 300132, China)(To whom correspondence should be addressed)Kenichi Shimizu (Kanazawa Institute of Technology, Ishikawa, Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第4期263-268,共6页
The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures.... The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures. sensitive to external stress. determine the configurations of stacking faults in γphase Partial dislocations at the front sides of stacking faults are usetul for the nucleation of εmartensite plates. The growth of ε martensite plates is accompanied with the disappearance of local pre-existing stacking faults, The ε martensite vanants behave in three morphologies of respective stopping. continuous penetrating and intersections with the formation of secondary ε martensite plates 展开更多
关键词 MN electron microscopy analysis of Deformation Induced Martensite Transformation in an Fe-Mn-Si-Cr-Ni Alloy Fe Si Cr Ni
下载PDF
Nitrogen-and Oxygen-Containing Porous Ultrafine Carbon Nanofiber:A Highly Flexible Electrode Material for Supercapacitor 被引量:5
2
作者 Kai Wei Kyu-Oh Kim +4 位作者 Kyung-Hun Song Chang-Yong Kang Jung soon Lee Mayakrishnan Gopiraman Ick-Soo Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第5期424-431,共8页
Herein, we report a simple and effective preparation of ultrafine CNFs (u-CNFs) with high surface area via electrospinning of two immiscible polymers [polyacrylonitrile (PAN) and poly(methyl methacry- late) (P... Herein, we report a simple and effective preparation of ultrafine CNFs (u-CNFs) with high surface area via electrospinning of two immiscible polymers [polyacrylonitrile (PAN) and poly(methyl methacry- late) (PMMA)] followed by calcination at high temperature in an inert atmosphere. Various electrospinning conditions were optimized in detail. Four different kinds of PAN/PMMA ratios (10/0, 7:3, 5:5 and 3:7) were chosen and found that the PAN/PMMA ratio of 3:7 (PAN/PMMA-3:7) is the optimum one. BET anal- ysis showed the specific surface area of the u-CNFs-3:7 was 46Z57 m2/g with an excellent pore volume (1.15 cms g-l) and an average pore size (9.48 nm): it is about 25 times higher than the conventional CNFs (c-CNFs). TEM and FE-SEM images confirmed the ultrafine structure of the CNFs with a thinner fiber di- ameter of-50 nm. The graphitic nature and atomic arrangement of the u-CNFs were investigated by Raman and XPS analyses. For the supercapacitor application, unlike the common electrode preparation methods, the u-CNFs-3:7 was used without any activation, chemical or mechanical modifications. The u-CNFs- 3:7 showed a better specific capacitance of 86 Fig in 1 mol/L 1-12S04 when compared to pure CNFs. The excellent physicochemical properties make the u-CNFs-3:7 an alternative choice to the existing CNFs for the supercapacitors. 展开更多
关键词 Carbon fiber Porosity electron microscopy Surface analysis Supercapacitor
原文传递
In Situ TEM Observation of the Gasification and Growth of Carbon Nanotubes Using Iron Catalysts 被引量:2
3
作者 Xiaofeng Feng See Wee Chee +5 位作者 Renu Sharma Kai Liu Xu Xie Qunqing Li Shoushan Fan Kaili Jiang 《Nano Research》 SCIE EI CAS CSCD 2011年第8期767-779,共13页
We report the in situ transmission electron microscope (TEM) observation of the catalytic gasification and growth of carbon nanotubes (CNTs). It was found that iron catalysts can consume the CNTs when pumping out the ... We report the in situ transmission electron microscope (TEM) observation of the catalytic gasification and growth of carbon nanotubes (CNTs). It was found that iron catalysts can consume the CNTs when pumping out the precursor gas, acetylene, at the growth temperature, and reinitiate the growth when acetylene is re-introduced. The switching between gasification and growth of CNTs can be repeated many times with the same catalyst. To understand the phenomenon, thermogravimetric analysis (TGA) coupled with mass spectroscopy was used to study the mechanism involved. It was shown that the residual water molecules in the growth chamber of the TEM react with and remove carbon atoms of CNTs as carbon monoxide vapor under the action of the catalyst, when the precursor gas is pumped out. This result contributes to a better understanding of the water-assisted and oxygen-assisted synthesis of CNT arrays, and provides useful clues on how to extend the lifetime and improve the activity of the catalysts. 展开更多
关键词 Carbon nanotubes GASIFICATION GROWTH iron catalyst environmental transmission electron microscopy (ETEM) thermogravimetric analysis (TGA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部