期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The ORR electron transfer kinetics control via Co-N_(x) and graphitic N sites in cobalt single atom catalysts in alkaline and acidic media 被引量:3
1
作者 Tong Shen Xiaoxiao Huang +3 位作者 Shibo Xi Wei Li Shengnan Sun Yanglong Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期184-194,共11页
Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding ... Cost-effective 3d transition metal(TM) based single atom catalysts(SACs) for oxygen reduction reaction(ORR) are potential alternatives for Pt-based electrocatalysts in fuel cells and metal-air batteries.Understanding the effects of SACs’ properties and active site composition on the catalytic performance is significant to construct highly efficient catalysts. Here, we successfully promote the activity of cobalt single atoms decorated on N-doped carbon nanosheets via tuning the content of different nitrogen components, which outperforms most reported cobalt SACs. The activity and kinetics show positive correlation trends with the content of Co-Nxand graphitic N, serving as the main active sites.Furthermore, ORR kinetics in alkaline media can be positively affected by the conductivity of catalysts while no similar relation is observed in acidic media. The slight loss of Co-Nxsites engenders a mild change of performance in alkaline media, while the decrease of Co-Nxsite activity due to chemical oxidation of carbon support and the loss of Co-Nxsites in acidic media exacerbate the degradation of performance. Our work provides an insight into the relation between ORR electron transfer kinetics and active sites in 3d TM based SACs. 展开更多
关键词 Oxygen reduction reaction Single-atom electrocatalysts electron transfer kinetics Active sites Degradation mechanism
下载PDF
Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting 被引量:2
2
作者 Jianjun Zhang Gaoyuan Yang +4 位作者 Bowen He Bei Cheng Youji Li Guijie Liang Linxi Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第10期2530-2538,共9页
Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during pract... Noble metal cocatalysts have shown great potential in boosting the performance of CdS in photocatalytic water splitting.However,the mechanism and kinetics of electron transfer in noble-metal-decorated CdS during practical hydrogen evolution is not clearly elucidated.Herein,Pt-nanoparticle-decorated CdS nanorods(CdS/Pt)are utilized as the model system to analyze the electron transfer kinetics in CdS/Pt heterojunction.Through femtosecond transient absorption spectroscopy,three dominating exciton quenching pathways are observed and assigned to the trapping of photogenerated electrons at shallow states,recombination of free electrons and trapped holes,and radiative recombination of locally photogenerated electron-hole pairs.The introduction of Pt cocatalyst can release the electrons trapped at the shallow states and construct an ultrafast electron transfer tunnel at the CdS/Pt interface.When CdS/Pt is dispersed in acetonitrile,the lifetime and rate for interfacial electron transfer are respectively calculated to be~5.5 ps and~3.5×10^(10) s^(−1).The CdS/Pt is again dispersed in water to simulate photocatalytic water splitting.The lifetime of the interfacial electron transfer decreases to~5.1 ps and the electron transfer rate increases to~4.9×10^(10) s^(−1),confirming that Pt nanoparticles serve as the main active sites of hydrogen evolution.This work reveals the role of Pt cocatalysts in enhancing the photocatalytic performance of CdS from the perspective of electron transfer kinetics. 展开更多
关键词 Femtosecond transient absorption SPECTROSCOPY Photocatalytic water splitting CDS electron transfer kinetics Trap state
下载PDF
CHRONOABSORPTOMETRY FOR THE DETERMINATION OF KINETIC PARAMETERS OF ELECTRON TRANSFER REACTIONS USING LONG-OPTICAL-PATH ELECTROCHEMICAL CELL
3
作者 Zhang Yu YU Mei QIN Mao Chun JING Department of Chemistry,Qufu Normal University,Qufu Shandong,273165 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第8期729-732,共4页
A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electror... A single potential step chronoabsorptometric method for the determination of ki- netic parameters of simple quasi-reversible reactions is described.It is verified by determining the kinetic parameters for the electroreduction of ferricyanide.A long-optical-path electro- chemical cell with a plug-in electrode is used.The thickness of solution layer is 0.55 mm 展开更多
关键词 CHRONOABSORPTOMETRY FOR THE DETERMINATION OF KINETIC PARAMETERS OF electron transfer REACTIONS USING LONG-OPTICAL-PATH ELECTROCHEMICAL CELL SCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部