为了探讨交通运输部门的低碳发展方向,基于LEAP(longrange energy alternatives planning system)模型建立西安市道路交通运输部门运输能源与环境模型,模拟2021—2050年不同情景下交通运输部门的能源需求、CO_(2)和污染物排放变化趋势...为了探讨交通运输部门的低碳发展方向,基于LEAP(longrange energy alternatives planning system)模型建立西安市道路交通运输部门运输能源与环境模型,模拟2021—2050年不同情景下交通运输部门的能源需求、CO_(2)和污染物排放变化趋势以及减排潜力。结果表明,低碳情景(LC)下能源消耗和CO_(2)排放在2031年左右达到峰值,2050年相对基准情景(BAU)的削减率分别为32.62%、30.21%,对CO、NO_(x)、PM_(10)减排效果较好,相对BAU削减率分别为33.88%、36.27%、40.33%;各子情景中,运输结构调整情景(TSA)节能减排贡献最大,其次为绿色汽车情景(GC)和技术性节能情景(TES);要实现交通运输部门碳减排和污染物的排放控制,需调整交通结构,淘汰老旧车型和大力发展公共交通,并不断完善相应的基础设施,提高新能源汽车的市占率。展开更多
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d...The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.展开更多
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm...In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.展开更多
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite...Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.展开更多
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual...The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people.展开更多
Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a sp...Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a specific period of use[1−3].Not only does it bring about discomfort for users regarding thermos-physiology,but it also has a detrimental effect on interface adhesion and signal quality,thus hindering exact sig-nal monitoring during prolonged periods[4−6].展开更多
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni...Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.展开更多
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ...Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.展开更多
The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topol...The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subject...Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subjected to modifications,the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy.One such strategy is test case prioritization(TCP).Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest.Nonetheless,singularity in objective functions and the lack of dissimilitude among the re-ordered test sequences have degraded the cogency of their approaches.Considering such gaps and scenarios when the meteoric and continuous updations in the software make the intensive unit and integration testing process more fragile,this study has introduced a memetics-inspired methodology for TCP.The proposed structure is first embedded with diverse parameters,and then traditional steps of the shuffled-frog-leaping approach(SFLA)are followed to prioritize the test cases at unit and integration levels.On 5 standard test functions,a comparative analysis is conducted between the established algorithms and the proposed approach,where the latter enhances the coverage rate and fault detection of re-ordered test sets.Investigation results related to the mean average percentage of fault detection(APFD)confirmed that the proposed approach exceeds the memetic,basic multi-walk,PSO,and optimized multi-walk by 21.7%,13.99%,12.24%,and 11.51%,respectively.展开更多
文摘为了探讨交通运输部门的低碳发展方向,基于LEAP(longrange energy alternatives planning system)模型建立西安市道路交通运输部门运输能源与环境模型,模拟2021—2050年不同情景下交通运输部门的能源需求、CO_(2)和污染物排放变化趋势以及减排潜力。结果表明,低碳情景(LC)下能源消耗和CO_(2)排放在2031年左右达到峰值,2050年相对基准情景(BAU)的削减率分别为32.62%、30.21%,对CO、NO_(x)、PM_(10)减排效果较好,相对BAU削减率分别为33.88%、36.27%、40.33%;各子情景中,运输结构调整情景(TSA)节能减排贡献最大,其次为绿色汽车情景(GC)和技术性节能情景(TES);要实现交通运输部门碳减排和污染物的排放控制,需调整交通结构,淘汰老旧车型和大力发展公共交通,并不断完善相应的基础设施,提高新能源汽车的市占率。
基金supported by the National Natural Science Foundation of China(61673209,71971115)。
文摘The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.
基金the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province(Nos.23NSFSCC0116 and 2022NSFSC12333)the Nuclear Energy Development Project(No.[2021]-88).
文摘In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays.
基金We acknowledge the support from the National Key Research and Development Program of China(Grant No.2022YFA1405000)the Natural Science Foundation of Jiangsu Province,Major Project(Grant No.BK20212004)+1 种基金the National Natural Science Foundation of China(Grant No.62374083)the State Key Laboratory of Analytical Chemistry for Life Science(Grant No.5431ZZXM2205).
文摘Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems.
基金supported by China Agriculture Research System of MOF and MARA(CARS-41)Wens Fifth Five R&D Major Project(WENS-2020-1-ZDZX-007)。
文摘The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people.
文摘Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a specific period of use[1−3].Not only does it bring about discomfort for users regarding thermos-physiology,but it also has a detrimental effect on interface adhesion and signal quality,thus hindering exact sig-nal monitoring during prolonged periods[4−6].
基金This work is financially supported by the National Natural Science Foundation of China(52303036)the Natural Science Foundation of Guangxi Province(2020GXNSFAA297028)+4 种基金the Guangxi Science and Technology Base and Talent Special Project(GUIKE AD23026179)the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019)the Natural Science Foundation of Sichuan Province(2023NSFSC0986)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Sklpme2023-3-18).
文摘Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金supported by the National Natural Science Foundation of China(52363028,21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.
基金supported by National Natural Science Foundation of China(No.11975038)the National Key Research and Development Program of China(No.2022YFA1604600)。
文摘The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
文摘Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subjected to modifications,the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy.One such strategy is test case prioritization(TCP).Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest.Nonetheless,singularity in objective functions and the lack of dissimilitude among the re-ordered test sequences have degraded the cogency of their approaches.Considering such gaps and scenarios when the meteoric and continuous updations in the software make the intensive unit and integration testing process more fragile,this study has introduced a memetics-inspired methodology for TCP.The proposed structure is first embedded with diverse parameters,and then traditional steps of the shuffled-frog-leaping approach(SFLA)are followed to prioritize the test cases at unit and integration levels.On 5 standard test functions,a comparative analysis is conducted between the established algorithms and the proposed approach,where the latter enhances the coverage rate and fault detection of re-ordered test sets.Investigation results related to the mean average percentage of fault detection(APFD)confirmed that the proposed approach exceeds the memetic,basic multi-walk,PSO,and optimized multi-walk by 21.7%,13.99%,12.24%,and 11.51%,respectively.