The modification mechanism of the water/alcohol cathode interlayer is one of the most complicated problems in the field of organic photovoltaics,which has not been clearly elucidated yet;this greatly restricts the fur...The modification mechanism of the water/alcohol cathode interlayer is one of the most complicated problems in the field of organic photovoltaics,which has not been clearly elucidated yet;this greatly restricts the further enhancement of the PCE for polymer solar cells.Herein,we clarified the different effects of PFN and its derivatives,namely,poly[(9,9-bis(3’-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN-Br) in modifying fullerene-free PSCs.It is found for the first time that doping on IT-4F by the amino group of PFN leads to the unfavorable charge accumulation,and hence,forms a dense layer of electronegative molecule due to the poor electron transport capacity of the non-fullerene acceptor IT-4F.The electronegative molecular layer can block the electron transfer from the active layer to the interlayer and cause serious charge recombination at the active layer/cathode interface.This mechanism could be verified by the ESR measurement and electron-only devices.By replacing PFN with PFN-Br,the excessive doping effect between the cathode interlayer and IT-4F is eliminated,by which the charge transport and collection can be greatly improved.As a result,a high PCE of 13.5%was achieved in the fullerene-free PSCs.展开更多
基金the financial support from NSFC(21325419,21504095,and 51373181)the Chinese Academy of Science(XDB12030200,KJZD-EW-J01)。
文摘The modification mechanism of the water/alcohol cathode interlayer is one of the most complicated problems in the field of organic photovoltaics,which has not been clearly elucidated yet;this greatly restricts the further enhancement of the PCE for polymer solar cells.Herein,we clarified the different effects of PFN and its derivatives,namely,poly[(9,9-bis(3’-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN-Br) in modifying fullerene-free PSCs.It is found for the first time that doping on IT-4F by the amino group of PFN leads to the unfavorable charge accumulation,and hence,forms a dense layer of electronegative molecule due to the poor electron transport capacity of the non-fullerene acceptor IT-4F.The electronegative molecular layer can block the electron transfer from the active layer to the interlayer and cause serious charge recombination at the active layer/cathode interface.This mechanism could be verified by the ESR measurement and electron-only devices.By replacing PFN with PFN-Br,the excessive doping effect between the cathode interlayer and IT-4F is eliminated,by which the charge transport and collection can be greatly improved.As a result,a high PCE of 13.5%was achieved in the fullerene-free PSCs.