The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numeric...The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.展开更多
The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential futu...The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Text) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 pA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.展开更多
Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix me...Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.展开更多
The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure ...The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.展开更多
We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,e...We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.展开更多
The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the p...The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.展开更多
In the present work, the momentum-space multichannel optical method is employed in four-state close-coupling calculations to study the electronic excitation of H2 molecules by electron-impact. Particularly, differenti...In the present work, the momentum-space multichannel optical method is employed in four-state close-coupling calculations to study the electronic excitation of H2 molecules by electron-impact. Particularly, differential cross sections for the x1∑g+b3∑u+,x1∑g+-a3∑g,andx1∑g-c3Пu transitions are reported. Comparison is made with the availableexperimental and theoretical results.展开更多
In this paper, we present integral cross sections (ICS) for electron impact excitation of the n = 2 levels in helium in the impact energy range of 23.5 eV to 35 eV. The ICS of each final state, 2^3S, 2^1S, 2^3P and ...In this paper, we present integral cross sections (ICS) for electron impact excitation of the n = 2 levels in helium in the impact energy range of 23.5 eV to 35 eV. The ICS of each final state, 2^3S, 2^1S, 2^3P and 2^1P, has been determined by integration of the angular differential cross sections (DCS) over all of 0° to 180°, where those DCS were obtained from both our previous experiments and the extrapolation using the convergent close coupling calculation. The present experimental ICS for the optically allowed 21P transition state are also compared with those obtained from the BE f-scaling method. Very good agreement between the experimental and BE f-scaled 21P ICSs is generally found in the measured impact energy region.展开更多
The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π...The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π,2;∑;,1;△,1;△,1;∑;,1;Π,and;∑;in a range of R=0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(;S;) + N(;S;) and Cu(;S;)+N(;D;) dissociation limits.All the possible vibrational levels,rotational constants,and spectral constants for the six bound states of X;∑;,1;Π,2;∑;,1;△,1;∑;,and 1;Π are obtained by solving the radial Schrdinger equation of nuclear motion with the Le Roy provided Level 8.0 program.Also the transition dipole moments from the ground state X;∑;to the excited states 1;Π and 2;∑;are calculated and the result indicates that the 2;∑-X;∑ transition has a much higher transition dipole moment than the 1;Π-X;∑;transition even though the l;Π state is much lower in energy than the 2;∑;state.展开更多
The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and sta...The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results.The results agree well with available measurements in the overlapping energy regions overall.The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels.The datasets presented in this paper,including the excitation cross sections,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.展开更多
Employing both the Dirac R-matrix and the relativistic distorted wave with independent process and isolated reso- nance approaches, we report resonance enhanced electron impact excitation data (specifically, effectiv...Employing both the Dirac R-matrix and the relativistic distorted wave with independent process and isolated reso- nance approaches, we report resonance enhanced electron impact excitation data (specifically, effective collision strengths) among the lowest 41 levels from the n = 3 configurations of Cu XV. The results show that the latter approach can obtain resonance contributions reasonably well for most excitations of Cu XV, though a comparison between the two approaches shows that the close-coupling effects are truly significant for rather weak excitations, especially for two-electron excitations from the 3s3p4 to 3s23p23d configuration. Resonance contributions are significant (more than two orders of magnitude) for many excitations and dramatically influence the line intensity ratios associated with density diagnostics.展开更多
The present paper covers ab initio UHF calculations with a d, p-polarized basis set performed for eight electronic states of BH2 and the equilibrium geometries, electronic term values Tc and vibrational frequencies of...The present paper covers ab initio UHF calculations with a d, p-polarized basis set performed for eight electronic states of BH2 and the equilibrium geometries, electronic term values Tc and vibrational frequencies of the five stable states X2A1, 2B1, 2B2, 22A1 and 2A2. On the basis of the UHF results, the states 22B2. 2B1 and 32A1 are predicted to be unstable. The MP2/6-31G * * calculations were performed for the X2A1 and 2B1, states, and the calculated equilibrium geometries, Tc value and vibrational frequencies are similar to the UHF results. The MP2/6-31G * * studies on the reaction BH2→BH + H for the X2A1 and 2B1 states were carried out and the HB-H bond energies of these two states were calculated.展开更多
We study the double ionization process of atoms in intense laser fields. The momentum distributions of the correlated electrons are calculated. Contrary to the general expectation, we show an increasing proportion of ...We study the double ionization process of atoms in intense laser fields. The momentum distributions of the correlated electrons are calculated. Contrary to the general expectation, we show an increasing proportion of the electrons ionized via excitation with the increasing laser intensity. These electrons generally have small energy thus they concentratedly distribute on the central region of the momentum diagram. Consequently, the central part of the momentum diagram becomes more notable in higher intensity laser fields. Further study suggests that this phenomenon is general in double ionization.展开更多
We calculate the electron impact excitation of Ni-like gold by using the Dirac R-matrix theory, and the cor- responding collision strengths and effective collision strengths are obtained. In the calculations of the le...We calculate the electron impact excitation of Ni-like gold by using the Dirac R-matrix theory, and the cor- responding collision strengths and effective collision strengths are obtained. In the calculations of the level energy, (1sZ2sZ2p6)3sZ3p63d10, 3s23p63d94/, 3s23p53d104/, and 3s3p63d104/(l = 0, 1,2,3) configurations are included and 107 fine-structure levels are generated. In the calculations of the collision strengths, only the first 59 levels are included. Com- parisons are made with the distorted wave (DW) results of Zeng et al. for both collision strengths and effective collision strengths. For the collision strengths, the two sets of calculations are in excellent agreement for most of the transitions. However, because of the inclusion of the resonances, our effective collision strengths are generally several times larger than those of Zeng et al.. The accuracy of our calculations is assessed.展开更多
A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation(FBA), i.e....A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation(FBA), i.e., replacing the several lowest partial wave cross sections of the total cross sections within FBA by the corresponding exact partial wave cross sections. A new set of codes are developed to calculate the FBA partial wave cross sections. Using this method,the convergent e–He collision cross sections of optical-forbidden and optical-allowed transitions at low to high incident energies are obtained. The calculation results demonstrate the validity and efficiency of the method.展开更多
The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the m...The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).展开更多
Damage points induced by 355 nm laser irradiation increase more quickly on the surface of fused silica in vacuum of about 10^-3 Pa than in atmospheric air at the same fluence. The larger concentration of point defects...Damage points induced by 355 nm laser irradiation increase more quickly on the surface of fused silica in vacuum of about 10^-3 Pa than in atmospheric air at the same fluence. The larger concentration of point defects in vacuum is confirmed by photoluminescence intensity. X-ray photoelectron spectroscopy and infrared absorption indicate the formation of sub-stoichiometric silica on the surface. The degradation mechanism of fused silica in vacuum is discussed.展开更多
Using the linear-response method, we investigate the phonon properties of β-cristobalite crystal under electronic ex- citation effect. We find that the transverse-acoustic phonon frequency becomes imaginary as the el...Using the linear-response method, we investigate the phonon properties of β-cristobalite crystal under electronic ex- citation effect. We find that the transverse-acoustic phonon frequency becomes imaginary as the electron temperature is increased, which means that the lattice of β-cristobalite becomes unstable under intense laser irradiation. In addition, for the optic phonon mode, the LO(H)-TO(H) splitting disappears when the electronic temperature reaches a certain value, corresponding to the whole transverse-acoustic phonon branches becoming negative. It means that the electronic excitation destroys the macroscopic electric field of β-cristobalite. Based on the calculated phonon band structures, some thermo- dynamic properties are calculated as a function of temperature at different electronic temperatures. These investigations provide evidence that non-thermal melting takes place during a femtosecond pulse laser interaction with β-cristobalite.展开更多
Group IVB carbides have been applied in extreme aerospace environments as hard ceramic coatings; ZrC is being considered as a replacement for SiC in nuclear reactors. Therefore, a thorough understanding of the laser i...Group IVB carbides have been applied in extreme aerospace environments as hard ceramic coatings; ZrC is being considered as a replacement for SiC in nuclear reactors. Therefore, a thorough understanding of the laser irradiation response of group IVB carbides is of clear significance. However, the existing knowledge on the fundamental properties of IVB group carbides is limited and insufficient with regard to both irradiated and non-irradiated characteristics. We investigate the effect of ultrafast laser irradiation on the lattice stability of ceramic materials (IVB group carbides) using the density functional perturbation theory (DFPT). The calculated phonon frequencies of TiC and ZrC at the ground state are in good agreement with previous calculations and experimental values. The phonon frequencies of IVB group carbides are positive, even though the electronic temperature reached 5 eV. Thus, IVB group carbides are more stable under ultrafast laser irradiation, which has greater benefits in nuclear and aeronautical applications compared to metals (W, Na), semimetals (Bi), and semiconductors (Si, SIC). The thermodynamic properties of ZrC are calculated as functions of their lattice temperature at different electronic temperatures. The elastic shear constants of IVB group carbides satisfy the Born stability criteria at Te = 5 eV. In addition, a comparison of the predicted melting temperatures of IVB group carbides, reveal that HfC is better suited for extreme high-temperature environments.展开更多
In the framework of density functional theory (DFT), the electronic excitations and nonlinear optical (NLO) properties of six binuclear transition metal cluster anions with the formula of [Ch2M-(μ-Ch)2-M'CN]^...In the framework of density functional theory (DFT), the electronic excitations and nonlinear optical (NLO) properties of six binuclear transition metal cluster anions with the formula of [Ch2M-(μ-Ch)2-M'CN]^2- (M = Mo, W; Ch = S, Se; M' = Cu, Ag) have been systemically investigated at both cases of gas phase and DMF solution. The obtained electronic absorption spectra reveal that the element replacements of metals M and ligands Ch have significant influence on the absorptions, especially on the low-lying ones. In addition, the transitions of μ-Ch→M are dominant for the low-lying excitations, whereas the transitions of M'→M as well as Ch→M are mainly responsible for the higher excitations. The calculated molecular first and second hyperpolarizabilities present the remarkable element substitution and solvent effects. The analyses show that the transitions involving μ-Ch→M charge transfer make the critical contributions to the first hyperpolarizability t, and that the charge transfers from the moieties of MCh4 to M'CN as well as those of μ-Ch→M and M'→M are responsible for the second hyperpolarizability y. Moreover, the introduction of solvent leads to the results that the transitions within the moieties of MCh4 and M'CN make larger contributions to the hyperpolarizability, especially to γ.展开更多
文摘The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm [(3s^23p^5)5p →(3s^23p^5)4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm [(3s^23p^5)4p → (3s^23p^5)4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N2(C^3Пu →B3Пg)) to 391.4 nm (N2^+(B2 ∑u^+→ ∑g^+)). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.
文摘The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Text) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 pA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974253)。
文摘Cross-sections for electronic excitation and de-excitation among the ground state and lowest-lying seven electronic excited states of carbon monoxide(CO)by low-energy electron impact are computed using the R-matrix method.The excitation cross-sections from the ground state to the electronic states a^(3)Π,a'^(3)Σ^(+)+and A^(1)Πagree with previous experimental and theoretical results.In addition,the cross-sections for the I^(1)Σ^(+)-and D^(1)Δstates of CO,which will cascade to CO a'^(3)Σ^(+)+and A^(1)Πstates,are calculated.Furthermore,in contrast to the typical increase in electronic excitation cross-sections with collision energy,the de-excitation cross-sections show a negative trend with increasing energy.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA 1602500)the National Natural Science Foundation of China (Grant Nos.11934004 and 12241410).
文摘The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.
基金supported by the grant of the Russian Science Foundation(project No.22-29-00124)。
文摘We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12241410)。
文摘The electron impact excitation(EIE) cross sections of an atom/ion in the whole energy region are needed in many research fields, such as astrophysics studies, inertial confinement fusion researches and so on. In the present work, an effective method to calculate the EIE cross sections of an atom/ion in the whole energy region is presented. We use the EIE cross sections of helium as an illustration example. The optical forbidden 1^(1)S–n^(1)S(n = 2–4) and optical allowed 1^(1)S–n^(1)P(n = 2–4) excitation cross sections are calculated in the whole energy region using the scheme that combines the partial wave R-matrix method and the first Born approximation. The calculated cross sections are in good agreement with the available experimental measurements. Based on these accurate cross sections of our calculation, we find that the ratios between the accurate cross sections and Born cross sections are nearly the same for different excitation final states in the same channel. According to this interesting property, a universal correction function is proposed and given to calculate the accurate EIE cross sections with the same computational efforts of the widely used Born cross sections,which should be very useful in the related application fields. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00142.
基金supported by the National Natural Science Foundation of China(Grant Nos.11447158 and 11404223)
文摘In the present work, the momentum-space multichannel optical method is employed in four-state close-coupling calculations to study the electronic excitation of H2 molecules by electron-impact. Particularly, differential cross sections for the x1∑g+b3∑u+,x1∑g+-a3∑g,andx1∑g-c3Пu transitions are reported. Comparison is made with the availableexperimental and theoretical results.
基金supported in part by the Australian Research Council through its Centres of Excellence Program
文摘In this paper, we present integral cross sections (ICS) for electron impact excitation of the n = 2 levels in helium in the impact energy range of 23.5 eV to 35 eV. The ICS of each final state, 2^3S, 2^1S, 2^3P and 2^1P, has been determined by integration of the angular differential cross sections (DCS) over all of 0° to 180°, where those DCS were obtained from both our previous experiments and the extrapolation using the convergent close coupling calculation. The present experimental ICS for the optically allowed 21P transition state are also compared with those obtained from the BE f-scaling method. Very good agreement between the experimental and BE f-scaled 21P ICSs is generally found in the measured impact energy region.
文摘The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π,2;∑;,1;△,1;△,1;∑;,1;Π,and;∑;in a range of R=0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(;S;) + N(;S;) and Cu(;S;)+N(;D;) dissociation limits.All the possible vibrational levels,rotational constants,and spectral constants for the six bound states of X;∑;,1;Π,2;∑;,1;△,1;∑;,and 1;Π are obtained by solving the radial Schrdinger equation of nuclear motion with the Le Roy provided Level 8.0 program.Also the transition dipole moments from the ground state X;∑;to the excited states 1;Π and 2;∑;are calculated and the result indicates that the 2;∑-X;∑ transition has a much higher transition dipole moment than the 1;Π-X;∑;transition even though the l;Π state is much lower in energy than the 2;∑;state.
基金supported by the National Natural Science Foundation of China(Grant Nos.12204288,11934004,and 12274040)
文摘The electron excitation processes of H(1s)+He(1s^(2))→H(2s/2p)+He(1s^(2))are studied in impact energy range of 20-2000 e V/u by using the quantum-mechanical molecular orbital close-coupling(QMOCC)method.Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results.The results agree well with available measurements in the overlapping energy regions overall.The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels.The datasets presented in this paper,including the excitation cross sections,are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.
基金supported by the National Natural Science Foundation of China(Grant Nos.11076009 and 11374062)the Chinese Association of Atomic and Molecular Data,the Chinese National Fusion Project for ITER(Grant No.2015GB117000)the Leading Academic Discipline Project of Shanghai,China(Grant No.B107)
文摘Employing both the Dirac R-matrix and the relativistic distorted wave with independent process and isolated reso- nance approaches, we report resonance enhanced electron impact excitation data (specifically, effective collision strengths) among the lowest 41 levels from the n = 3 configurations of Cu XV. The results show that the latter approach can obtain resonance contributions reasonably well for most excitations of Cu XV, though a comparison between the two approaches shows that the close-coupling effects are truly significant for rather weak excitations, especially for two-electron excitations from the 3s3p4 to 3s23p23d configuration. Resonance contributions are significant (more than two orders of magnitude) for many excitations and dramatically influence the line intensity ratios associated with density diagnostics.
基金Supported by the National Natural Science Foundation of China
文摘The present paper covers ab initio UHF calculations with a d, p-polarized basis set performed for eight electronic states of BH2 and the equilibrium geometries, electronic term values Tc and vibrational frequencies of the five stable states X2A1, 2B1, 2B2, 22A1 and 2A2. On the basis of the UHF results, the states 22B2. 2B1 and 32A1 are predicted to be unstable. The MP2/6-31G * * calculations were performed for the X2A1 and 2B1, states, and the calculated equilibrium geometries, Tc value and vibrational frequencies are similar to the UHF results. The MP2/6-31G * * studies on the reaction BH2→BH + H for the X2A1 and 2B1 states were carried out and the HB-H bond energies of these two states were calculated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475168,11674231,and 61575124)Natural Science Foundation of Shanghai,China(Grant No.15ZR1430600)Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development,China
文摘We study the double ionization process of atoms in intense laser fields. The momentum distributions of the correlated electrons are calculated. Contrary to the general expectation, we show an increasing proportion of the electrons ionized via excitation with the increasing laser intensity. These electrons generally have small energy thus they concentratedly distribute on the central region of the momentum diagram. Consequently, the central part of the momentum diagram becomes more notable in higher intensity laser fields. Further study suggests that this phenomenon is general in double ionization.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174213 and 11304266)
文摘We calculate the electron impact excitation of Ni-like gold by using the Dirac R-matrix theory, and the cor- responding collision strengths and effective collision strengths are obtained. In the calculations of the level energy, (1sZ2sZ2p6)3sZ3p63d10, 3s23p63d94/, 3s23p53d104/, and 3s3p63d104/(l = 0, 1,2,3) configurations are included and 107 fine-structure levels are generated. In the calculations of the collision strengths, only the first 59 levels are included. Com- parisons are made with the distorted wave (DW) results of Zeng et al. for both collision strengths and effective collision strengths. For the collision strengths, the two sets of calculations are in excellent agreement for most of the transitions. However, because of the inclusion of the resonances, our effective collision strengths are generally several times larger than those of Zeng et al.. The accuracy of our calculations is assessed.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB921501 and 2013CB922200)the National Natural Science Foundation of China(Grant Nos.11274035,11275029,11328401,11371218,11474031,11474032,and 11474034)the Foundation of Development of Science and Technology of Chinese Academy of Engineering Physics(Grant Nos.2013A0102005 and 2014A0102005)
文摘A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation(FBA), i.e., replacing the several lowest partial wave cross sections of the total cross sections within FBA by the corresponding exact partial wave cross sections. A new set of codes are developed to calculate the FBA partial wave cross sections. Using this method,the convergent e–He collision cross sections of optical-forbidden and optical-allowed transitions at low to high incident energies are obtained. The calculation results demonstrate the validity and efficiency of the method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11873013)。
文摘The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).
文摘Damage points induced by 355 nm laser irradiation increase more quickly on the surface of fused silica in vacuum of about 10^-3 Pa than in atmospheric air at the same fluence. The larger concentration of point defects in vacuum is confirmed by photoluminescence intensity. X-ray photoelectron spectroscopy and infrared absorption indicate the formation of sub-stoichiometric silica on the surface. The degradation mechanism of fused silica in vacuum is discussed.
基金support by the National Natural Science Foundation of China(Grant Nos.11374217 and 11547158)
文摘Using the linear-response method, we investigate the phonon properties of β-cristobalite crystal under electronic ex- citation effect. We find that the transverse-acoustic phonon frequency becomes imaginary as the electron temperature is increased, which means that the lattice of β-cristobalite becomes unstable under intense laser irradiation. In addition, for the optic phonon mode, the LO(H)-TO(H) splitting disappears when the electronic temperature reaches a certain value, corresponding to the whole transverse-acoustic phonon branches becoming negative. It means that the electronic excitation destroys the macroscopic electric field of β-cristobalite. Based on the calculated phonon band structures, some thermo- dynamic properties are calculated as a function of temperature at different electronic temperatures. These investigations provide evidence that non-thermal melting takes place during a femtosecond pulse laser interaction with β-cristobalite.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474207 and 11374217)
文摘Group IVB carbides have been applied in extreme aerospace environments as hard ceramic coatings; ZrC is being considered as a replacement for SiC in nuclear reactors. Therefore, a thorough understanding of the laser irradiation response of group IVB carbides is of clear significance. However, the existing knowledge on the fundamental properties of IVB group carbides is limited and insufficient with regard to both irradiated and non-irradiated characteristics. We investigate the effect of ultrafast laser irradiation on the lattice stability of ceramic materials (IVB group carbides) using the density functional perturbation theory (DFPT). The calculated phonon frequencies of TiC and ZrC at the ground state are in good agreement with previous calculations and experimental values. The phonon frequencies of IVB group carbides are positive, even though the electronic temperature reached 5 eV. Thus, IVB group carbides are more stable under ultrafast laser irradiation, which has greater benefits in nuclear and aeronautical applications compared to metals (W, Na), semimetals (Bi), and semiconductors (Si, SIC). The thermodynamic properties of ZrC are calculated as functions of their lattice temperature at different electronic temperatures. The elastic shear constants of IVB group carbides satisfy the Born stability criteria at Te = 5 eV. In addition, a comparison of the predicted melting temperatures of IVB group carbides, reveal that HfC is better suited for extreme high-temperature environments.
基金the National Natural Science Foundation of China (No. 20573114)Foundation of Fujian Province (No. 2006F3133)
文摘In the framework of density functional theory (DFT), the electronic excitations and nonlinear optical (NLO) properties of six binuclear transition metal cluster anions with the formula of [Ch2M-(μ-Ch)2-M'CN]^2- (M = Mo, W; Ch = S, Se; M' = Cu, Ag) have been systemically investigated at both cases of gas phase and DMF solution. The obtained electronic absorption spectra reveal that the element replacements of metals M and ligands Ch have significant influence on the absorptions, especially on the low-lying ones. In addition, the transitions of μ-Ch→M are dominant for the low-lying excitations, whereas the transitions of M'→M as well as Ch→M are mainly responsible for the higher excitations. The calculated molecular first and second hyperpolarizabilities present the remarkable element substitution and solvent effects. The analyses show that the transitions involving μ-Ch→M charge transfer make the critical contributions to the first hyperpolarizability t, and that the charge transfers from the moieties of MCh4 to M'CN as well as those of μ-Ch→M and M'→M are responsible for the second hyperpolarizability y. Moreover, the introduction of solvent leads to the results that the transitions within the moieties of MCh4 and M'CN make larger contributions to the hyperpolarizability, especially to γ.