A control scheme of electronic power transformer (EPT) in a three-phase four-wire distribution system, which included an input section, an isolating section and an output section, was researched under unbalanced loads...A control scheme of electronic power transformer (EPT) in a three-phase four-wire distribution system, which included an input section, an isolating section and an output section, was researched under unbalanced loads. The simple and appropriate control scheme was developed through analyzing the system requirements of the primary side and the load requirements of the secondary side. In the input section, a dual-loop control in synchronous rotating d-q coordinates was introduced, and in the output section, a dual-loop control based on instantaneous output voltage was used. Load characteristics of EPT were investigated by using Matlab/Simulink software. Simulation results showed that, with the proposed control scheme, the EPT has good performances and the sinusoidal input current and constant output voltage can be realized under both balanced and unbalanced loads.展开更多
At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important i...At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.展开更多
Structured microgrids(SμGs)and Flexible electronic large power transformers(FeLPTs)are emerging as two essential technologies for renewable energy integration,flexible power transmission,and active control.SμGs prov...Structured microgrids(SμGs)and Flexible electronic large power transformers(FeLPTs)are emerging as two essential technologies for renewable energy integration,flexible power transmission,and active control.SμGs provide the integration of renewable energy and storage to balance the energy demand and supply as needed for a given system design.FeLPT’s flexibility for processing,control,and re-configurability offers the capability for flexible transmission for effective flow control and enable SμGs connectivity while still keeping multiscale system level control.Early adaptors for combined heat and power have demonstrated significant economic benefits while reducing environmental foot prints.They bring tremendous benefits to utility companies also.With storage and active control capabilities,a 300-percent increase in bulk transmission and distribution lines are possible without having to increase capacity.SμGs and FeLPTs will also enable the utility industry to be better prepared for the emerging large increase in base load demand from electric transportation and data centers.This is a win-win-win situation for the consumer,the utilities(grid operators),and the environment.SμGs and FeLPTs provide value in power substation,energy surety,reliability,resiliency,and security.It is also shown that the initial cost associated with SμG and FeLPTs deployment can be easily offset with reduced operating cost,which in turn reduces the total life-cycle cost by 33%to 67%.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response...Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response and high-accuracy voltage source converters.This paper models its primary circuit and addresses its basic operation mechanism.Then a dual-timescale control scheme is investigated to realize the coordinated regulation of both types of converter.A simulation case is established in PSCAD containing interconnected mid-voltage distribution networks.Simulations with poor-and well-matched control timescales are both carried out.And accordingly,the power flow controllability under these conditions is compared.When the shorter control timescale is no more than tenth of the longer one,the power electronic zigzag transformer will operate with satisfying performances.展开更多
Power electronic traction transformers(PETTs)will be increasingly applied to locomotives in the future for their small volume and light weight.However,similar to conventional trains,PETTs behave as constant power load...Power electronic traction transformers(PETTs)will be increasingly applied to locomotives in the future for their small volume and light weight.However,similar to conventional trains,PETTs behave as constant power loads and may cause low-frequency oscillation(LFO)to the train-network system.To solve this issue,a mathematical model of the PETT is firstly proposed and verified based on the extended describing function(EDF)method in this paper.In the proposed model,the LLC converter is simplified to an equivalent circuit consisting of a capacitor and a resistor in parallel.It is further demonstrated that the model can apply to various LLC converters with different topologies and controls.Particularly,when the parameter differences between cells are not obvious,the PETT can be simplified to a single-phase rectifier(i.e.,conventional train)by equivalent transformation.Based on the model of PETT,the system low-frequency stability and influential factors are analyzed by using the generalized Nyquist criterion.Lastly,the correctness and accuracy of theoretical analyses are validated by off-line and hardware-in-the-loop simulation results.展开更多
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid moderniz...The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.展开更多
Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model ...Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.展开更多
In view of the operating characteristics for voltage sags of AC side of the power electronic transformer(PET),a low-voltage ride through(LVRT)strategy adapted to bidirectional power exchange of PET is proposed for the...In view of the operating characteristics for voltage sags of AC side of the power electronic transformer(PET),a low-voltage ride through(LVRT)strategy adapted to bidirectional power exchange of PET is proposed for the purposes of maintaining the system stability,assisting the system voltage recovery and protecting PET safety.During the asymmetric voltage sag,the negative sequence current of PET is eliminated to ensure the symmetry of the injected current.According to the degree of positive sequence voltage sag,the reactive current injection is provided to assist in voltage recovery.According to the PET active power condition before the voltage sag,the level and direction of which are maintained as far as possible without exceeding the limit,for which the disturbance to the AC and DC grids is reduced.Finally,the effectiveness of the proposed LVRT strategy is verified by simulation model.展开更多
This paper presents a three-phase integrated power electronic transformer(PET)topology with the capability of DC fault clearance based on the investigation of PET topology.The proposed PET has three ports of high-volt...This paper presents a three-phase integrated power electronic transformer(PET)topology with the capability of DC fault clearance based on the investigation of PET topology.The proposed PET has three ports of high-voltage AC,high-voltage DC and low-voltage DC,which can achieve the flexible access of distributed energy resources・The power unit of the PET adopts a three-phase integrated topology,and the single-phase fluctuating power in the DC-link capacitor is reduced by a 4-port DC/DC converter,thereby reducing the capacitance of the DC-link capacitor;Meanwhile,the power unit uses the clamp double sub-module(CDSM)to allow for self-clearing of the short-circuit fault on the high-voltage DC side.Finally,this paper verifies the proposed PET through an EMT simulation and experimental prototype.展开更多
Design of power electronic transformers is a hot research topic and its efficiency improvement is a critical problem all over the world.It is also the largest barrier hindering the application of power electronic tran...Design of power electronic transformers is a hot research topic and its efficiency improvement is a critical problem all over the world.It is also the largest barrier hindering the application of power electronic transformers in industry.In this paper,the state of power electronic transformers is fully presented in terms of efficiency improvements.It is followed by the efficiency modeling of several typical topologies,and their detailed analysis and comparisons.Then,the corresponding industrial application scope of these topologies is presented,providing theoretical guidance for their industrial applications.展开更多
Accelerated insulation aging problems under high frequency repetitive impulses in power electronic transformers are drawing more and more attention in modern power systems. Partial discharge (PD) characteristics inclu...Accelerated insulation aging problems under high frequency repetitive impulses in power electronic transformers are drawing more and more attention in modern power systems. Partial discharge (PD) characteristics including discharge inception voltage, phase distribution and statistical characteristics on polyimide (PI) surface under different impulse waveforms and the insulation life of PI films are studied in this paper. We carry out experiments based on PD and insulation lifetime test systems, using five different types of repetitive impulses, including three bipolar waves and two unipolar waves. The experimental results show that there is little variation in discharge inception voltage under different waveforms, but great variation in phase distribution and statistical characteristics of PD. In addition, insulation life is approximately the same under different waveforms with the same polarity, and the aging rate under bipolar waveforms is larger than that under unipolar waveforms. We explain the differences between the bipolar and unipolar waveforms on insulation life, which can be concluded that the surface charge under unipolar waveform accumulates more significnatly compared with bipolar waveform and decreases the electric filed strength in discharging the air gap and inhibits surface discharge from occurring.展开更多
基金This project is financed by the New Century Outstanding Talents Supporting Program of Ministry of Education and Superior Young Teachers Supporting Program of Ministry of Education.
文摘A control scheme of electronic power transformer (EPT) in a three-phase four-wire distribution system, which included an input section, an isolating section and an output section, was researched under unbalanced loads. The simple and appropriate control scheme was developed through analyzing the system requirements of the primary side and the load requirements of the secondary side. In the input section, a dual-loop control in synchronous rotating d-q coordinates was introduced, and in the output section, a dual-loop control based on instantaneous output voltage was used. Load characteristics of EPT were investigated by using Matlab/Simulink software. Simulation results showed that, with the proposed control scheme, the EPT has good performances and the sinusoidal input current and constant output voltage can be realized under both balanced and unbalanced loads.
基金the National Key Research and Development Program of China(2017YFB0903200).
文摘At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.
文摘Structured microgrids(SμGs)and Flexible electronic large power transformers(FeLPTs)are emerging as two essential technologies for renewable energy integration,flexible power transmission,and active control.SμGs provide the integration of renewable energy and storage to balance the energy demand and supply as needed for a given system design.FeLPT’s flexibility for processing,control,and re-configurability offers the capability for flexible transmission for effective flow control and enable SμGs connectivity while still keeping multiscale system level control.Early adaptors for combined heat and power have demonstrated significant economic benefits while reducing environmental foot prints.They bring tremendous benefits to utility companies also.With storage and active control capabilities,a 300-percent increase in bulk transmission and distribution lines are possible without having to increase capacity.SμGs and FeLPTs will also enable the utility industry to be better prepared for the emerging large increase in base load demand from electric transportation and data centers.This is a win-win-win situation for the consumer,the utilities(grid operators),and the environment.SμGs and FeLPTs provide value in power substation,energy surety,reliability,resiliency,and security.It is also shown that the initial cost associated with SμG and FeLPTs deployment can be easily offset with reduced operating cost,which in turn reduces the total life-cycle cost by 33%to 67%.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
基金This work was supported by the National Natural Science Foundation of China(51490680,51490683).
文摘Power electronic zigzag transformer is an attractive solution for the flexible interconnection of smart distribution networks.It is constituted by slow-response and low-precision thyristor converters and fast-response and high-accuracy voltage source converters.This paper models its primary circuit and addresses its basic operation mechanism.Then a dual-timescale control scheme is investigated to realize the coordinated regulation of both types of converter.A simulation case is established in PSCAD containing interconnected mid-voltage distribution networks.Simulations with poor-and well-matched control timescales are both carried out.And accordingly,the power flow controllability under these conditions is compared.When the shorter control timescale is no more than tenth of the longer one,the power electronic zigzag transformer will operate with satisfying performances.
基金supported in part by the National Natural Science Foundation of China(52125705)in part by the Natural Science Foundation of Hunan Province(2022JJ40066)。
文摘Power electronic traction transformers(PETTs)will be increasingly applied to locomotives in the future for their small volume and light weight.However,similar to conventional trains,PETTs behave as constant power loads and may cause low-frequency oscillation(LFO)to the train-network system.To solve this issue,a mathematical model of the PETT is firstly proposed and verified based on the extended describing function(EDF)method in this paper.In the proposed model,the LLC converter is simplified to an equivalent circuit consisting of a capacitor and a resistor in parallel.It is further demonstrated that the model can apply to various LLC converters with different topologies and controls.Particularly,when the parameter differences between cells are not obvious,the PETT can be simplified to a single-phase rectifier(i.e.,conventional train)by equivalent transformation.Based on the model of PETT,the system low-frequency stability and influential factors are analyzed by using the generalized Nyquist criterion.Lastly,the correctness and accuracy of theoretical analyses are validated by off-line and hardware-in-the-loop simulation results.
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
文摘The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.
基金supported by the National Key Research and Development Program of China(2017YFB0903300).
文摘Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.
基金supported by the Science and Technology Program of State Grid Jiangsu Electric Power Co.Ltd.(granted no.5210EF18001D)granted contract-Key technology research of relay protection for the AC-DC hybrid grid with various distributed energy resources.
文摘In view of the operating characteristics for voltage sags of AC side of the power electronic transformer(PET),a low-voltage ride through(LVRT)strategy adapted to bidirectional power exchange of PET is proposed for the purposes of maintaining the system stability,assisting the system voltage recovery and protecting PET safety.During the asymmetric voltage sag,the negative sequence current of PET is eliminated to ensure the symmetry of the injected current.According to the degree of positive sequence voltage sag,the reactive current injection is provided to assist in voltage recovery.According to the PET active power condition before the voltage sag,the level and direction of which are maintained as far as possible without exceeding the limit,for which the disturbance to the AC and DC grids is reduced.Finally,the effectiveness of the proposed LVRT strategy is verified by simulation model.
基金supported by National Key Research and Development Program of China(2016YFB0400505)Science and Technology Project of State Grid Corporation(SGRIGLBDTKJ[2017]676).
文摘This paper presents a three-phase integrated power electronic transformer(PET)topology with the capability of DC fault clearance based on the investigation of PET topology.The proposed PET has three ports of high-voltage AC,high-voltage DC and low-voltage DC,which can achieve the flexible access of distributed energy resources・The power unit of the PET adopts a three-phase integrated topology,and the single-phase fluctuating power in the DC-link capacitor is reduced by a 4-port DC/DC converter,thereby reducing the capacitance of the DC-link capacitor;Meanwhile,the power unit uses the clamp double sub-module(CDSM)to allow for self-clearing of the short-circuit fault on the high-voltage DC side.Finally,this paper verifies the proposed PET through an EMT simulation and experimental prototype.
基金Supported by the Natural Science Foundation of Guangdong Province(2017A030310243).
文摘Design of power electronic transformers is a hot research topic and its efficiency improvement is a critical problem all over the world.It is also the largest barrier hindering the application of power electronic transformers in industry.In this paper,the state of power electronic transformers is fully presented in terms of efficiency improvements.It is followed by the efficiency modeling of several typical topologies,and their detailed analysis and comparisons.Then,the corresponding industrial application scope of these topologies is presented,providing theoretical guidance for their industrial applications.
基金supported by the National Natural Science Foundation of China(51929701,52207153)Fundamental Research Funds for the Central Universities(2023JC005).
文摘Accelerated insulation aging problems under high frequency repetitive impulses in power electronic transformers are drawing more and more attention in modern power systems. Partial discharge (PD) characteristics including discharge inception voltage, phase distribution and statistical characteristics on polyimide (PI) surface under different impulse waveforms and the insulation life of PI films are studied in this paper. We carry out experiments based on PD and insulation lifetime test systems, using five different types of repetitive impulses, including three bipolar waves and two unipolar waves. The experimental results show that there is little variation in discharge inception voltage under different waveforms, but great variation in phase distribution and statistical characteristics of PD. In addition, insulation life is approximately the same under different waveforms with the same polarity, and the aging rate under bipolar waveforms is larger than that under unipolar waveforms. We explain the differences between the bipolar and unipolar waveforms on insulation life, which can be concluded that the surface charge under unipolar waveform accumulates more significnatly compared with bipolar waveform and decreases the electric filed strength in discharging the air gap and inhibits surface discharge from occurring.