High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play...High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.展开更多
Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine w...Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine will not operate properly. In the electron linac of a soft X-ray FEL device, because the eiectron energy is not very high, the problem can become even more serious. As a typical example, the microbunching instability in the linac of the proposed Shanghai Soft X-ray Free Electron Laser facility (SXFEL) is investigated in detail by means of both analytical formulae and simulation tools. In the study, a new mechanism introducing random noise into the beam current profile as the beam passes through a chicane-type bunch compressor is proposed. The higher-order modes that appear in the simulations suggest that further improvement of the current theoretical model of the instability is needed.展开更多
基金supported by the Science and Technology Major Project of Hubei Province,China (No.2021AFB001).
文摘High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.
基金Supported by National Natural Science Foundation of China,(11275253)Natural Science Foundation of Shanghai City(12ZR1436600)
文摘Microbunching instability usually exists in the linear accelerator (linac) of a free electron laser (FEL) facility. If it is not controlled effectively, the beam quality will be damaged seriously and the machine will not operate properly. In the electron linac of a soft X-ray FEL device, because the eiectron energy is not very high, the problem can become even more serious. As a typical example, the microbunching instability in the linac of the proposed Shanghai Soft X-ray Free Electron Laser facility (SXFEL) is investigated in detail by means of both analytical formulae and simulation tools. In the study, a new mechanism introducing random noise into the beam current profile as the beam passes through a chicane-type bunch compressor is proposed. The higher-order modes that appear in the simulations suggest that further improvement of the current theoretical model of the instability is needed.