This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
It is challenging to measure the electron density of the unsteady plasma formed by charged particles generated from explosions in the air,because it is transient and on a microsecond time scale.In this study,the time-...It is challenging to measure the electron density of the unsteady plasma formed by charged particles generated from explosions in the air,because it is transient and on a microsecond time scale.In this study,the time-varying electron density of the plasma generated from a small cylindrical cyclotrimethylenetrinitramine(RDX)explosion in air was measured,based on the principle of microwave Rayleigh scattering.It was found that the evolution of the electron density is related to the diffusion of the detonation products.The application of the Rayleigh microwave scattering principle is an attempt to estimate the electron density in explosively generated plasma.Using the equivalent radius and length of the detonation products in the bright areas of images taken by a high-speed framing camera,the electron density was determined to be of the order of 10^(20)m^(−3).The delay time between the initiation time and the start of variation in the electron-density curve was 2.77–6.93μs.In the time-varying Rayleigh microwave scattering signal curve of the explosively generated plasma,the electron density had two fluctuation processes.The durations of the first stage and the second stage were 11.32μs and 19.20μs,respectively.Both fluctuation processes increased rapidly to a peak value and then rapidly attenuated with time.This revealed the movement characteristics of the charged particles during the explosion.展开更多
We report on a novel and convenient method of measuring secondary electron spectra for insulators in a secondary electron yield measurement system with a planar grid analyzer configuration and a metal mesh probe. In t...We report on a novel and convenient method of measuring secondary electron spectra for insulators in a secondary electron yield measurement system with a planar grid analyzer configuration and a metal mesh probe. In this measurement, the planar grid is negatively biased to force some emitted secondary electrons to return to the sample surface and to neutralize charges accumulated on the sample during the previous beam irradiation. The surface potential of the sample is then measured by use of a metal mesh probe. The grid bias for neutralization corresponding to the zero surface potential is determined based on the linear relationship between the surface potential and the grid bias. Once the surface potential equals zero, the secondary electron spectra of polymethyl methacrylate(PMMA) are studied experimentally by measuring the -curve and then fitting it to Everhart's formula. The measurement results show that the peak energy and the full width at half maximum of the spectra are 4.26 eV and 14.06 eV, respectively.展开更多
Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electron...Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.展开更多
A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-chann...A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous wave glow discharge HCN laser with a 3.4 m cavity length and a 100 mW power output at 337μm wavelength. The temporal resolution was 0.1 ms and the detection sensitivity was 1/12 fringe. Preliminary experimental results measured by the interferometer on HT-7 tokamak are reported.展开更多
The Measures for the Administration of the Import of Mechanical and Electronic' Products co-formulated by the Ministry of Commerce,the General Administration of Customs and the General Administration of Quality Su...The Measures for the Administration of the Import of Mechanical and Electronic' Products co-formulated by the Ministry of Commerce,the General Administration of Customs and the General Administration of Quality Supervision,Inspection and Quarantine,was hereby promul- gated,which entered into force as of May 1,2008.展开更多
Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research.This article presents the design of a Cotton-Mouton polarime...Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research.This article presents the design of a Cotton-Mouton polarimeter interferometer,which provides a reliable density measurement without fringe jumps.Cotton-Mouton effect on Experimental Advanced Superconducting Tokamak(EAST)is studied by Stokes equation with three parameters(s_(1),s_(2),s_(3)).It demonstrates that under the condition of a small Cotton-Mouton effect,parameter s_(2)contains information about Cotton-Mouton effect which is proportional to the line-integrated density.For a typical EAST plasma,the magnitude of Cotton-Mouton effects is less than 2πfor laser wavelength of 432μm.Refractive effect due to density gradient is calculated to be negligible.Time modulation of Stokes parameters(s_(2),s_(3))provides heterodyne measurement.Due to the instabilities arising from laser oscillation and beam refraction in plasmas,it is necessary for the system to be insensitive to variations in the amplitude of the detection signal.Furthermore,it is shown that non-equal amplitude of X-mode and O-mode within a certain range only affects the DC offset of Stokes parameters(s_(2),s_(3))but does not greatly influence the phase measurements of Cotton-Mouton effects.展开更多
Through the analysis of the principle, error sources and precision of trigonometric leveling, this paper points out the key problems about first order leveling replaced by trigonometric leveling; and for the first tim...Through the analysis of the principle, error sources and precision of trigonometric leveling, this paper points out the key problems about first order leveling replaced by trigonometric leveling; and for the first time puts forward that, in some given conditions, it is not only feasible but also valuable to replace first order leveling by precise trigonometric leveling, and proves it by experimentation as well. The content and conclusion of this paper have consulting significance and practicable value for our setting down relational criterion and production practice.展开更多
The track association problem of radar and electronic support measure (ESM) has been considered in the literature for several years. This problem is crucial for radar-to-ESM track fusion and is complicated by the pr...The track association problem of radar and electronic support measure (ESM) has been considered in the literature for several years. This problem is crucial for radar-to-ESM track fusion and is complicated by the presence of individual systematic errors and measurement errors. In order to improve the track association of radar and ESM sensors, a pseudo-linear filtering algorithm is proposed to estimate the target states and improve the stability of the filter. It is found that, however, the correct probability of radar- to-ESM track association decreases as the radar measurement error decreases, when the pseudo-linear filter is used for ESM sensor filtering. In view of the strange phenomenon, this paper analyzes the reason for it by using the statistic theory and further performs Monte Carlo simulation to verify the analysis.展开更多
An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure ...An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.展开更多
Electronic speckle pattern interferometry(ESPI) and digital speckle pattern interferometry are wellestablished non-contact measurement methods. They have been widely used to carry out precise deformation mapping. Ho...Electronic speckle pattern interferometry(ESPI) and digital speckle pattern interferometry are wellestablished non-contact measurement methods. They have been widely used to carry out precise deformation mapping. However, the simultaneous two-dimensional(2D) or three-dimensional(3D) deformation measurements using ESPI with phase shifting usually involve complicated and slow equipment. In this Letter, we solve these issues by proposing a modified ESPI system based on double phase modulations with only one laser and one camera. In-plane normal and shear strains are obtained with good quality. This system can also be developed to measure 3D deformation, and it has the potential to carry out faster measurements with a highspeed camera.展开更多
Bending and first flexural mode vibration behavior of electrostatic actuated nanometer-sized interdigitated cantilever arrays are characterized under vacuum conditions. The pull-in'' effect in dc driving and the har...Bending and first flexural mode vibration behavior of electrostatic actuated nanometer-sized interdigitated cantilever arrays are characterized under vacuum conditions. The pull-in'' effect in dc driving and the hard spring effect'' in ac driving are observed. A mass sensitivity of 20 fg is expected for our devices due to the ultra-small mass of the arm and relative high Q factor. The mass-spring lump model combined with Green's function method is used to fit the dc driving behaviors including the pull-in voltage. For the ac driving case, the polynomial expansion of the capacitive force is used in the model. The successfully fittings of the pull-in voltage and the hard spring effect prove that our simulation method could be used for guiding the geometrical design of cantilever-based sensors.展开更多
A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater additio...A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interracial layer and building a new device structure. The simulation resuIts indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.展开更多
For the development of high energy physics,it is needed to improve the performance of the relativistic electron bunch.The measurement of the ultrashort relativistic electron pulse becomes one of the key technologies.T...For the development of high energy physics,it is needed to improve the performance of the relativistic electron bunch.The measurement of the ultrashort relativistic electron pulse becomes one of the key technologies.The electro-optic sampling measurement of relativistic electron pulses is a promising method.This method is nondestructive, non-intrusive,and real-time monitoring.Distance and angles of the reference frames will cause system deviations.In this paper these system deviations are analyzed by simulation.It provides a reference for the experiment.展开更多
The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is pres...The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented. Based on Beijing Free Electron Laser (BFEL), the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China. The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps.展开更多
Real-time single-shot measurement of the femtosecond electron beam duration in laser wakefield accelerators is discussed for both experimental design and theoretical analysis that combines polarimetry and interferomet...Real-time single-shot measurement of the femtosecond electron beam duration in laser wakefield accelerators is discussed for both experimental design and theoretical analysis that combines polarimetry and interferometry.The probe pulse polarization is rotated by the azimuthal magnetic field of the electron beam and then introduced into a Michelson-type interferometer for self-interference. The electron beam duration is obtained from the region size of the interference fringes, which is independent of the pulse width of the probe laser. Using a larger magnification system or incident angle, the measurement resolution can be less than 1 fs.展开更多
Both the nature of avalanche ionization (AI) and the role of multi-photon ionization (MPI) in the studies of laser-induced damage have remained controversial up to now. According to the model proposed by Stuart et...Both the nature of avalanche ionization (AI) and the role of multi-photon ionization (MPI) in the studies of laser-induced damage have remained controversial up to now. According to the model proposed by Stuart et al., we study the role of MPI and AI in laser-induced damage in two dielectric films, fused silica (FS) and barium aluminum borosilicate (BBS), irradiated by 780-nm laser pulse with the pulse width range of 0.01 - 5 ps. The effects of MPI and initial electron density on seed electron generation are numerically analyzed. For FS, laser-induced damage is dominated by AI for the entire pulse width regime due to the wider band-gap. While for BBS, MPI becomes the leading power in damage for the pulse width T less than about 0.03 ps. MPI may result in a sharp rise of threshold fluence Fth on r, and AI may lead to a mild increase or even a constant value of Fth on r. MPI serves the production of seed electrons for AI when the electron density for AI is approached or exceeded before the end of MPI. This also means that the effect of initial electron can be neglected when MPI dominates the seed electron generation. The threshold fluence Fth decreases with the increasing initial electron density when the latter exceeds a certain critical value.展开更多
The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization...The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10^13/cm^3 can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower UV laser by air is considered in the simulation and it the limit of the length of plasma channel. than that of infrared pulse. The linear absorption of is shown that the linear absorption is important for the limit of the length of plasma channel.展开更多
In laser-arc double-sided welding, the spectral characteristics of the arc plasma are calculated and analyzed by spectroscopic diagnosis. The results show that, compared with conventional tungsten inert gas (TIG) we...In laser-arc double-sided welding, the spectral characteristics of the arc plasma are calculated and analyzed by spectroscopic diagnosis. The results show that, compared with conventional tungsten inert gas (TIG) welding, the introduction of a laser cilanges the physical characteristics of the arc plasma regardless of whether laser plasma penetration takes place, and that the influence of the laser mainly affects the near-anode region of the arc. When tile laser power is relatively low, the arc column tends to compress, and the arc spectral cilaracter- istics show no significant difference. When the arc root constricts, compared with pure TIG arc, the electron density increases by ~2.7 times and the electron temperature decreases by ~3000 K. When the arc column expands, the intensities of spectral lines of both the metal and Ar atoms are the strongest. But it is also observed that the electron density reduces, whereas there is no obvious decrease of electron temperature.展开更多
文摘This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
基金supported by National Natural Science Foundation of China(Nos.11502118,11504173).
文摘It is challenging to measure the electron density of the unsteady plasma formed by charged particles generated from explosions in the air,because it is transient and on a microsecond time scale.In this study,the time-varying electron density of the plasma generated from a small cylindrical cyclotrimethylenetrinitramine(RDX)explosion in air was measured,based on the principle of microwave Rayleigh scattering.It was found that the evolution of the electron density is related to the diffusion of the detonation products.The application of the Rayleigh microwave scattering principle is an attempt to estimate the electron density in explosively generated plasma.Using the equivalent radius and length of the detonation products in the bright areas of images taken by a high-speed framing camera,the electron density was determined to be of the order of 10^(20)m^(−3).The delay time between the initiation time and the start of variation in the electron-density curve was 2.77–6.93μs.In the time-varying Rayleigh microwave scattering signal curve of the explosively generated plasma,the electron density had two fluctuation processes.The durations of the first stage and the second stage were 11.32μs and 19.20μs,respectively.Both fluctuation processes increased rapidly to a peak value and then rapidly attenuated with time.This revealed the movement characteristics of the charged particles during the explosion.
基金Supported by the National Natural Science Foundation of China under Grant Nos U1537210 and 11375139the National Key Laboratory of Space Microwave Technology China under Grant No 9140C530101130C53013
文摘We report on a novel and convenient method of measuring secondary electron spectra for insulators in a secondary electron yield measurement system with a planar grid analyzer configuration and a metal mesh probe. In this measurement, the planar grid is negatively biased to force some emitted secondary electrons to return to the sample surface and to neutralize charges accumulated on the sample during the previous beam irradiation. The surface potential of the sample is then measured by use of a metal mesh probe. The grid bias for neutralization corresponding to the zero surface potential is determined based on the linear relationship between the surface potential and the grid bias. Once the surface potential equals zero, the secondary electron spectra of polymethyl methacrylate(PMMA) are studied experimentally by measuring the -curve and then fitting it to Everhart's formula. The measurement results show that the peak energy and the full width at half maximum of the spectra are 4.26 eV and 14.06 eV, respectively.
文摘Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.
文摘A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous wave glow discharge HCN laser with a 3.4 m cavity length and a 100 mW power output at 337μm wavelength. The temporal resolution was 0.1 ms and the detection sensitivity was 1/12 fringe. Preliminary experimental results measured by the interferometer on HT-7 tokamak are reported.
文摘The Measures for the Administration of the Import of Mechanical and Electronic' Products co-formulated by the Ministry of Commerce,the General Administration of Customs and the General Administration of Quality Supervision,Inspection and Quarantine,was hereby promul- gated,which entered into force as of May 1,2008.
基金financially supported by National Natural Science Foundation of China(No.12127809)。
文摘Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research.This article presents the design of a Cotton-Mouton polarimeter interferometer,which provides a reliable density measurement without fringe jumps.Cotton-Mouton effect on Experimental Advanced Superconducting Tokamak(EAST)is studied by Stokes equation with three parameters(s_(1),s_(2),s_(3)).It demonstrates that under the condition of a small Cotton-Mouton effect,parameter s_(2)contains information about Cotton-Mouton effect which is proportional to the line-integrated density.For a typical EAST plasma,the magnitude of Cotton-Mouton effects is less than 2πfor laser wavelength of 432μm.Refractive effect due to density gradient is calculated to be negligible.Time modulation of Stokes parameters(s_(2),s_(3))provides heterodyne measurement.Due to the instabilities arising from laser oscillation and beam refraction in plasmas,it is necessary for the system to be insensitive to variations in the amplitude of the detection signal.Furthermore,it is shown that non-equal amplitude of X-mode and O-mode within a certain range only affects the DC offset of Stokes parameters(s_(2),s_(3))but does not greatly influence the phase measurements of Cotton-Mouton effects.
文摘Through the analysis of the principle, error sources and precision of trigonometric leveling, this paper points out the key problems about first order leveling replaced by trigonometric leveling; and for the first time puts forward that, in some given conditions, it is not only feasible but also valuable to replace first order leveling by precise trigonometric leveling, and proves it by experimentation as well. The content and conclusion of this paper have consulting significance and practicable value for our setting down relational criterion and production practice.
基金supported by the National Natural Science Foundation of China (609721596103200161002006)
文摘The track association problem of radar and electronic support measure (ESM) has been considered in the literature for several years. This problem is crucial for radar-to-ESM track fusion and is complicated by the presence of individual systematic errors and measurement errors. In order to improve the track association of radar and ESM sensors, a pseudo-linear filtering algorithm is proposed to estimate the target states and improve the stability of the filter. It is found that, however, the correct probability of radar- to-ESM track association decreases as the radar measurement error decreases, when the pseudo-linear filter is used for ESM sensor filtering. In view of the strange phenomenon, this paper analyzes the reason for it by using the statistic theory and further performs Monte Carlo simulation to verify the analysis.
基金Supported by grants from by the Natural Science Foundation of China under Grant Nos 10732080, 10627201 and 10872191, and the National Basic Research Program of China under Grant No 2006CB300404.
文摘An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.
基金financially supported by the ANR Micromorfing Program(ANR-14-CE07-0035)China Scholarship Council(CSC)the Labex Action
文摘Electronic speckle pattern interferometry(ESPI) and digital speckle pattern interferometry are wellestablished non-contact measurement methods. They have been widely used to carry out precise deformation mapping. However, the simultaneous two-dimensional(2D) or three-dimensional(3D) deformation measurements using ESPI with phase shifting usually involve complicated and slow equipment. In this Letter, we solve these issues by proposing a modified ESPI system based on double phase modulations with only one laser and one camera. In-plane normal and shear strains are obtained with good quality. This system can also be developed to measure 3D deformation, and it has the potential to carry out faster measurements with a highspeed camera.
文摘Bending and first flexural mode vibration behavior of electrostatic actuated nanometer-sized interdigitated cantilever arrays are characterized under vacuum conditions. The pull-in'' effect in dc driving and the hard spring effect'' in ac driving are observed. A mass sensitivity of 20 fg is expected for our devices due to the ultra-small mass of the arm and relative high Q factor. The mass-spring lump model combined with Green's function method is used to fit the dc driving behaviors including the pull-in voltage. For the ac driving case, the polynomial expansion of the capacitive force is used in the model. The successfully fittings of the pull-in voltage and the hard spring effect prove that our simulation method could be used for guiding the geometrical design of cantilever-based sensors.
文摘A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interracial layer and building a new device structure. The simulation resuIts indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.
文摘For the development of high energy physics,it is needed to improve the performance of the relativistic electron bunch.The measurement of the ultrashort relativistic electron pulse becomes one of the key technologies.The electro-optic sampling measurement of relativistic electron pulses is a promising method.This method is nondestructive, non-intrusive,and real-time monitoring.Distance and angles of the reference frames will cause system deviations.In this paper these system deviations are analyzed by simulation.It provides a reference for the experiment.
基金Supported by National Natural Science Foundation of China (10575116)
文摘The Electro-optical sampling delay scanning technique can be used for electron beam bunch length measurement. A novel non-synchronous delay scanning technique based on the electro-optical sampling measurements is presented. Based on Beijing Free Electron Laser (BFEL), the electron beam bunch length was measured with the electro-optical sampling technique for the first time in China. The result shows that the electron beam bunch length at BFEL is about 5.6±1.2 ps.
基金Supported by the National Science Foundation of USA ( the most recent one being num bered PHY- 970 4 5 2 0 ) and by the U niversities of Missouri and Nebraska ( U SA )
基金supported by the National Natural Science Foundation of China(Nos.11127901,11425418,11505263,and 61521093)the Strategic Priority Research Program(B)(No.XDB16)+2 种基金Shanghai Sailing Program(Nos.17YF1421100 and 18YF1426000)the Youth Innovation Promotion Association CASthe State Key Laboratory Program of the Chinese Ministry of Science and Technology
文摘Real-time single-shot measurement of the femtosecond electron beam duration in laser wakefield accelerators is discussed for both experimental design and theoretical analysis that combines polarimetry and interferometry.The probe pulse polarization is rotated by the azimuthal magnetic field of the electron beam and then introduced into a Michelson-type interferometer for self-interference. The electron beam duration is obtained from the region size of the interference fringes, which is independent of the pulse width of the probe laser. Using a larger magnification system or incident angle, the measurement resolution can be less than 1 fs.
基金supported by the National Natural Science Foundation of China(No.10804090 and 60708004)the Wuhan University of Technology Foundation(No.xjj2007031)
文摘Both the nature of avalanche ionization (AI) and the role of multi-photon ionization (MPI) in the studies of laser-induced damage have remained controversial up to now. According to the model proposed by Stuart et al., we study the role of MPI and AI in laser-induced damage in two dielectric films, fused silica (FS) and barium aluminum borosilicate (BBS), irradiated by 780-nm laser pulse with the pulse width range of 0.01 - 5 ps. The effects of MPI and initial electron density on seed electron generation are numerically analyzed. For FS, laser-induced damage is dominated by AI for the entire pulse width regime due to the wider band-gap. While for BBS, MPI becomes the leading power in damage for the pulse width T less than about 0.03 ps. MPI may result in a sharp rise of threshold fluence Fth on r, and AI may lead to a mild increase or even a constant value of Fth on r. MPI serves the production of seed electrons for AI when the electron density for AI is approached or exceeded before the end of MPI. This also means that the effect of initial electron can be neglected when MPI dominates the seed electron generation. The threshold fluence Fth decreases with the increasing initial electron density when the latter exceeds a certain critical value.
基金supported by the National Natural Science Foundation of China(Nos.60621063,10634020,10734130,and 10521002)the National "973" Program of China(Nos.2007CB815101 and 2006CB806007).
文摘The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10^13/cm^3 can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower UV laser by air is considered in the simulation and it the limit of the length of plasma channel. than that of infrared pulse. The linear absorption of is shown that the linear absorption is important for the limit of the length of plasma channel.
基金supported by the National Natural Science Foundation(Grant No.51105105)the Fundamental Research Funds for the Central Universities(Grant No.HIT NSRIF 201137)
文摘In laser-arc double-sided welding, the spectral characteristics of the arc plasma are calculated and analyzed by spectroscopic diagnosis. The results show that, compared with conventional tungsten inert gas (TIG) welding, the introduction of a laser cilanges the physical characteristics of the arc plasma regardless of whether laser plasma penetration takes place, and that the influence of the laser mainly affects the near-anode region of the arc. When tile laser power is relatively low, the arc column tends to compress, and the arc spectral cilaracter- istics show no significant difference. When the arc root constricts, compared with pure TIG arc, the electron density increases by ~2.7 times and the electron temperature decreases by ~3000 K. When the arc column expands, the intensities of spectral lines of both the metal and Ar atoms are the strongest. But it is also observed that the electron density reduces, whereas there is no obvious decrease of electron temperature.