Stretchable electronics, which offers the performance of conventional wafer-based devices and mechan- ical properties of a rubber band, enables many novel applications that are not possible through conven- tional elec...Stretchable electronics, which offers the performance of conventional wafer-based devices and mechan- ical properties of a rubber band, enables many novel applications that are not possible through conven- tional electronics due to its brittle nature. One effective strategy to realize stretchable electronics is to design the inorganic semiconductor material in a stretchable format on a compliant elastomeric substrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1-2℃ temperature increase is not allowed. This article reviews the recent advances in thermal management of stretchable inorganic electronics with focuses on the thermal models and their comparisons to experiments and finite element simulations.展开更多
Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get...Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get equivalent electron correlation effects, one should enlarge the laser intensity cubically and the laser frequency linearly in proportion to the second ionization potentials of the target atoms. The physical mechanism behind the transform is to keep the ponderomotive parameter unchanged when the laser frequency is enlarged.展开更多
An oxide scale formed at 900 ℃ for 60 s in dry air was subjected to the simulated coiling processed with different coiling temperatures. The phase transformation behavior, especially the orientation distribution of t...An oxide scale formed at 900 ℃ for 60 s in dry air was subjected to the simulated coiling processed with different coiling temperatures. The phase transformation behavior, especially the orientation distribution of the oxide scale, was analyzed using electron backseattered diffraction (EBSD) technique. When cooling from the coiling tem- perature of 650 ℃, the scale consists of FeaO4 layer, FeO layer and FeaO4 seam. The FeaO4 precipitates are ob served in the FeO grains of the scale formed with the coiling temperature of 550 and 450 ℃. With the cofling temperature of 350 ℃, the decomposition of FeO is suppressed due to the low temperature. The Fe3O4 grains, which are decomposed from FeO, has the same orientation as the parent FeO grains. Moreover, the FeO grains, of which the growth direction is parallel to 〈001〉, is easier to decompose into Fe3O4 than the grains with other orientations.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR15A020001)the National Natural Science Foundation of China(Grant Nos.11502009,11372272 and 11321202)the National Basic Research Program of China(Grant No.2015CB351900)
文摘Stretchable electronics, which offers the performance of conventional wafer-based devices and mechan- ical properties of a rubber band, enables many novel applications that are not possible through conven- tional electronics due to its brittle nature. One effective strategy to realize stretchable electronics is to design the inorganic semiconductor material in a stretchable format on a compliant elastomeric substrate. Engineering thermal management is essential for the development of stretchable electronics to avoid adverse thermal effects on its performance as well as in applications involving human body and biological tissues where even 1-2℃ temperature increase is not allowed. This article reviews the recent advances in thermal management of stretchable inorganic electronics with focuses on the thermal models and their comparisons to experiments and finite element simulations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475168 and 11674231)sponsored by Shanghai Gaofeng&Gaoyuan Project for University Academic Program Development(Zhang)
文摘Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get equivalent electron correlation effects, one should enlarge the laser intensity cubically and the laser frequency linearly in proportion to the second ionization potentials of the target atoms. The physical mechanism behind the transform is to keep the ponderomotive parameter unchanged when the laser frequency is enlarged.
基金Item Sponsored by National High-tech Research and Development Program(863 Program)of China(2012AA03A508)
文摘An oxide scale formed at 900 ℃ for 60 s in dry air was subjected to the simulated coiling processed with different coiling temperatures. The phase transformation behavior, especially the orientation distribution of the oxide scale, was analyzed using electron backseattered diffraction (EBSD) technique. When cooling from the coiling tem- perature of 650 ℃, the scale consists of FeaO4 layer, FeO layer and FeaO4 seam. The FeaO4 precipitates are ob served in the FeO grains of the scale formed with the coiling temperature of 550 and 450 ℃. With the cofling temperature of 350 ℃, the decomposition of FeO is suppressed due to the low temperature. The Fe3O4 grains, which are decomposed from FeO, has the same orientation as the parent FeO grains. Moreover, the FeO grains, of which the growth direction is parallel to 〈001〉, is easier to decompose into Fe3O4 than the grains with other orientations.