期刊文献+
共找到890篇文章
< 1 2 45 >
每页显示 20 50 100
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
1
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction electronic structure engineering DURABILITY Reaction barrier
下载PDF
Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction
2
作者 Linfeng Xiao Wanlu Ren +4 位作者 Shishi Shen Mengshan Chen Runhua Liao Yingtang Zhou Xibao Li 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第8期50-63,共14页
The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on... The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise.Nonetheless,the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges.In this study,we have devised a straightforward hydrothermal method to synthesize Bi_(2)O_(3)(BO)derived from metal‐organic frameworks(MOFs),loaded with flower-like ZnIn_(2)S_(4)(ZIS).This approach substantially enhances water adsorption and surface catalytic reactions,resulting in a remarkable enhancement of photocatalytic activity.By employing triethanolamine(TEOA)as a sacrificial agent,the hydrogen evolution rate achieved with 15%(mass fraction)ZIS loading on BO reached an impressive value of 1610μmol∙h^(−1)∙g^(−1),marking a 6.34-fold increase compared to that observed for bare BO.Furthermore,through density functional theory(DFT)and ab initio molecular dynamics(AIMD)calculations,we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface,including the identification of active sites for water adsorption and catalytic reactions.This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability. 展开更多
关键词 S-scheme Hydrogen evolution WETTABILITY Photocatalysis electronic structure
下载PDF
Rational modulation of electronic structure in PtAuCuNi alloys boosts efficient electrocatalytic ethanol oxidation assisted with energy-saving hydrogen evolution
3
作者 Hu Yao Yinan Zheng +3 位作者 Xin Yu Songjie Hu Baolian Su Xiaohui Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期557-567,I0014,共12页
Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of nove... Compared to conventional electrocatalytic water splitting,electrocatalytic ethanol oxidation reaction(EOR)along with hydrogen production is considered a more energy-efficient strategy.Herein,we prepared a type of novel quaternary alloy catalyst(PtAuCuNi@NF)that exhibits excellent activity for EOR(0.215 V at 10 mA cm^(-2))and hydrogen evolution reaction(HER)(7 mV at 10 mA cm^(-2)).Experimental results demonstrated that both Cu and Ni modulated the electronic environment around Pt and Au.The electron-rich active center facilitates the rapid adsorption and dissociation of reactants and intermediates for both EOR and HER.Impressively,in the ethanol-assisted overall water splitting(E-OWS),a current density of 10 mA cm^(-2)was achieved at 0.28 V.Moreover,an advanced acid-base self-powered system(A-Bsps)that can achieve a self-powered voltage of 0.59 V was assembled.Accordingly,the self-driven hydrogen production with zero external power supply was realized by integrating A-Bsps with the E-OWS equipment.The interesting results can provide a feasible strategy for designing and developing advanced nanoalloy-based materials for clean energy integration and use in various fields. 展开更多
关键词 Pt-based alloy electronic structure Ethanol oxidation Self-powered system Overall water splitting
下载PDF
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
4
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels Surface electronic structure ORR ELECTROCATALYST Organic ligands
下载PDF
Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries
5
作者 Daijie Deng Honghui Zhang +6 位作者 Jianchun Wu Xing Tang Min Ling Sihua Dong Li Xu Henan Li Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期239-249,I0007,共12页
Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity... Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs. 展开更多
关键词 S-doped VN electronic structures Spin state regulation Oxygen reduction reaction Zinc-air batteries
下载PDF
Fine-tuning electronic structure of N-doped graphitic carbon-supported Co-and Fe-incorporated Mo_(2)C to achieve ultrahigh electrochemical water oxidation activity
6
作者 Md.Selim Arif Sher Shah Hyeonjung Jung +3 位作者 Vinod K.Paidi Kug-Seung Lee Jeong Woo Han Jong Hyeok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期134-149,共16页
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated... Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance. 展开更多
关键词 fine-tuning electronic structures heteronanostructures Mo_(2)C multimetal(Co/Fe) oxygen evolution reaction
下载PDF
Mechanical Properties and Electronic Structures of M(M=Ti,V,Cr,Mn and Fe)Dopedβ-Si_(3)N_(4) from First-Principle
7
作者 龙敏 黄福祥 +4 位作者 XU Liangyu LI Xuemei YANG Zhou LENG Yue MEI Shini 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期639-644,共6页
The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters of... The structures,mechanical properties and electronic structures of M metals(M=Ti,V,Cr,Mn and Fe)dopedβ-Si_(3)N_(4) were investigated by First-principles calculations within CASTEP.The calculated lattice parameters ofβ-Si_(3)N_(4) were consistent with previous date.The cohesive energy and formation enthalpy show that initialβ-Si_(3)N_(4) has the highest structural stability.The calculated elastic constant and the Voigt-Reuss-Hill approximation indicate that elastic moduli ofβ-Si_(3)N_(4) are slightly reduced by M doping.Based on Poisson’s and Pugh’s ratio,β-Si_(3)N_(4) is a ductile material and the toughness ofβ-Si_(3)N_(4) increases with M doping,and Fe doping exhibited the best toughness.The results of density of states,charge distributions and overlapping populations indicate thatβ-Si_(3)N_(4) has the strong covalent and ionic bond strength between N and Si. 展开更多
关键词 first-principles β-Si_(3)N_(4) mechanical properties electronic structure
下载PDF
Geometries and electronic structures of Zr_(n)Cu(n=2–12) clusters: A joint machine-learning potential density functional theory investigation
8
作者 王一志 崔秀花 +3 位作者 刘静 井群 段海明 曹海宾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期595-602,共8页
Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedra... Zr-based amorphous alloys have attracted extensive attention because of their large glassy formation ability, wide supercooled liquid region, high elasticity, and unique mechanical strength induced by their icosahedral local structures.To determine the microstructures of Zr–Cu clusters, the stable and metastable geometry of Zr_(n)Cu(n=2–12) clusters are screened out via the CALYPSO method using machine-learning potentials, and then the electronic structures are investigated using density functional theory. The results show that the Zr_(n)Cu(n ≥ 3) clusters possess three-dimensional geometries, Zr_(n)Cu(n≥9) possess cage-like geometries, and the Zr_(12)Cu cluster has icosahedral geometry. The binding energy per atom gradually gets enlarged with the increase in the size of the clusters, and Zr_(n)Cu(n=5,7,9,12) have relatively better stability than their neighbors. The magnetic moment of most Zr_(n)Cu clusters is just 1μB, and the main components of the highest occupied molecular orbitals(HOMOs) in the Zr_(12)Cu cluster come from the Zr-d state. There are hardly any localized two-center bonds, and there are about 20 σ-type delocalized three-center bonds. 展开更多
关键词 geometries and electronic structures magnetic and chemical bonds machine learning potentials Zr–Cu clusters
下载PDF
Electronic structure and effective mass of pristine and Cl-doped CsPbBr_(3)
9
作者 魏志远 魏愉昊 +7 位作者 徐申东 彭舒婷 Makoto Hashimoto 路东辉 潘旭 匡泯泉 肖正国 何俊峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期167-171,共5页
Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properti... Organic–inorganic lead halide perovskites(LHPs) have attracted great interest owing to their outstanding optoelectronic properties.Typically,the underlying electronic structure would determinate the physical properties of materials.But as for now,limited studies have been done to reveal the underlying electronic structure of this material system,comparing to the huge amount of investigations on the material synthesis.The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena.In pristine CsPbBr_(3),the Fr?hlich polarons associated with the Pb–Br stretching modes are proposed to be responsible for the effective mass renormalization.In this regard,it would be very interesting to explore the electronic structure in doped LHPs.Here,we report high-resolution angle-resolved photoemission spectroscopy(ARPES) studies on both pristine and Cl-doped CsPbBr_(3).The experimental band dispersions are extracted from ARPES spectra along both ■ and ■ high symmetry directions.DFT calculations are performed and directly compared with the ARPES data.Our results have revealed the band structure of Cl-doped CsPbBr_(3) for the first time,which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr_(3) compound.Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength.These results will help understand the physical properties of LHPs as a function of doping. 展开更多
关键词 lead halide perovskites electronic structure effective mass
下载PDF
First-Principle Study on the Electronic Structure and Optical Property of New Diluted Magnetic Semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO
10
作者 Zhou Wenjie 《材料科学与工程(中英文B版)》 2024年第1期14-20,共7页
The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first... The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future. 展开更多
关键词 First-principles calculation electronic structure optical property new diluted magnetic semiconductor
下载PDF
Tuning the electronic structure of a metal-organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium 被引量:2
11
作者 Yuwen Li Yuhang Wu +5 位作者 Tongtong Li Mengting Lu Yi Chen Yuanjing Cui Junkuo Gao Guodong Qian 《Carbon Energy》 SCIE CSCD 2023年第2期61-71,共11页
The establishment of efficient oxygen evolution electrocatalysts is of great value but also challenging.Herein,a durable metal–organic framework(MOF)with minor atomically dispersed ruthenium and an optimized electron... The establishment of efficient oxygen evolution electrocatalysts is of great value but also challenging.Herein,a durable metal–organic framework(MOF)with minor atomically dispersed ruthenium and an optimized electronic structure is constructed as an efficient electrocatalyst.Significantly,the obtained NiRu_(0.08)-MOF with doping Ru only needs an overpotential of 187 mV at 10 mA cm^(-2) with a Tafel slop of 40 mV dec^(-1) in 0.1M KOH for the oxygen evolution reaction,and can work continuously for more than 300 h.Ultrahigh Ru mass activity is achieved,reaching 56.7 Ag^(-1)_(Ru) at an overpotential of 200 mV,which is 36 times higher than that of commercial RuO_(2).X-ray adsorption spectroscopy and density function theory calculations reveal that atomically dispersed ruthenium on metal sites in MOFs is expected to optimize the electronic structure of nickel sites,thus improving the conductivity of the catalyst and optimizing the adsorption energy of intermediates,resulting in significant optimization of electrocatalytic performance.This study could provide a new avenue for the design of efficient and stable MOF electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS electronic structure metal-organic framework oxygen evolution reaction
下载PDF
Electronic structure study of the charge-density-wave Kondo lattice CeTe_(3)
12
作者 王博 周锐 +2 位作者 罗学兵 张云 陈秋云 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期414-421,共8页
The behaviors of f electrons are crucial for understanding the rich phase diagrams and ground-state properties of heavy fermion(HF)systems.The complicated interactions between f electrons and conduction electrons larg... The behaviors of f electrons are crucial for understanding the rich phase diagrams and ground-state properties of heavy fermion(HF)systems.The complicated interactions between f electrons and conduction electrons largely enrich the basic properties of HF compounds.Here the electronic structure,especially the f-electron character,of the charge-density-wave(CDW)Kondo lattice compound CeTe_(3)has been studied by high-resolution angle-resolved photoemission spectroscopy.A weakly dispersive quasiparticle band near the Fermi level has been observed directly,indicating hybridization between f electrons and conduction electrons.Temperature-dependent measurements confirm the localized to itinerant transition of f electrons as the temperature decreases.Furthermore,an energy gap formed by one conduction band at low temperature is gradually closed with increasing temperature,which probably originates from the CDW transition at extremely high temperature.Additionally,orbital information of different electrons has also been acquired with different photon energies and polarizations,which indicates the anisotropy and diverse symmetries of the orbitals.Our results may help understand the complicated f-electron behaviors when considering its interaction with other electrons/photons in CeTe_(3)and other related compounds. 展开更多
关键词 4f-electron CHARGE-DENSITY-WAVE electronic structure angle-resolved photoemission spectroscopy
下载PDF
Intrinsic electronic structure and nodeless superconducting gap of YBa_(2)Cu_(3)O_(7)-σ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy
13
作者 李帅帅 苗泰民 +17 位作者 殷超辉 李颖昊 闫宏涛 陈逸雯 梁波 陈浩 朱文培 张申金 王志敏 张丰丰 杨峰 彭钦军 林成天 毛寒青 刘国东 许祖彦 赵林 周兴江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期263-268,共6页
The spatially-resolved laser-based high-resolution angle resolved photoemission spectroscopy(ARPES) measurements have been performed on the optimally-doped YBa_(2)Cu_(3)O_(7)-σ(Y123) superconductor. For the first tim... The spatially-resolved laser-based high-resolution angle resolved photoemission spectroscopy(ARPES) measurements have been performed on the optimally-doped YBa_(2)Cu_(3)O_(7)-σ(Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 were observed. The Fermi surface-dependent and momentum-dependent superconducting gap was determined which is nodeless and consistent with the d+is gap form. 展开更多
关键词 YBCO angle resolved photoemission spectroscopy electronic structure superconducting gap
下载PDF
Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe_(2)
14
作者 张美光 陈磊 +4 位作者 冯龙 拓换换 张云 魏群 李培芳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期349-354,共6页
Motivated by the recent experimental work,the pressure-induced structural transition of well-known two-dimensional(2D)1T-Hf Te_(2)was investigated up to 50 GPa through the advanced CALYPSO structure search technique c... Motivated by the recent experimental work,the pressure-induced structural transition of well-known two-dimensional(2D)1T-Hf Te_(2)was investigated up to 50 GPa through the advanced CALYPSO structure search technique combined with the first-principles calculations.Our calculations suggested that the 1T-Hf Te_(2)will first transform to C2/m phase at 3.6 GPa with a volume reduction of 7.6%and then to P62m phase at 9.6 GPa with a volume collapse of 4.6%.The occurrences of 3D C2/m and P62m phases mainly originated from the enhanced Te-Te interlayer coupling and the drastic distortions of Hf-Te polyhedrons in P3m1 phase under compression.Concomitantly,the coordination number of Hf atoms increased from six in P3m1 to eight in C2/m and eventually to nine in P62m at elevated pressure.The metallic and semimetallic nature of C2/m and P62m phases were characterized,and the evidence of the reinforced covalent interactions of Te-Hf and Te-Te orbitals in these two novel high-pressure phases were manifested by the atom-projected electronic DOS and Bader charge. 展开更多
关键词 transition metal dichalcogenides pressure-induced phase transition crystal structure electronic structure
下载PDF
Probing electronic structures of transition metal complexes using electron paramagnetic resonance spectroscopy
15
作者 Shengfa Ye 《Magnetic Resonance Letters》 2023年第1期43-60,I0003,共19页
Electron paramagnetic resonance(EPR)or electron spin resonance(ESR)has been widely employed to characterize transition metal complexes.However,because of the high degree of complexity of transition metal EPR spectra,h... Electron paramagnetic resonance(EPR)or electron spin resonance(ESR)has been widely employed to characterize transition metal complexes.However,because of the high degree of complexity of transition metal EPR spectra,how to extract the underlying electronicstructure information inevitably poses a major challenge to beginners,in particular for systems with S>1/2.In fact,the physical principles of transition metal EPR have long been well-established and since 1970s a series of dedicated voluminous monographs have been published already.Not surprisingly,they are not appropriate stating points for novices to grasp a panorama of the profound theory prior to scrutinizing in-depth references.The present review aims to fill this gap to provide a perspective of transition metal EPR and unveil some peculiar subtleties thereof on the basis of our recent work. 展开更多
关键词 EPR electronic structures Transition metal complexes Spin Hamiltonian
下载PDF
Study of the Electronic Structure and Optical Properties of Rare Earth Luminescent Materials
16
作者 Chengxi Zhang 《Journal of Materials Science and Chemical Engineering》 2023年第10期8-18,共11页
Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properti... Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging. 展开更多
关键词 Rare Earth Luminescent Materials electronic structure Optical Properties Luminescence Mechanism Prospects for Applications
下载PDF
First principles investigation of binary intermetallics in Mg-Al-Ca-Sn alloy:Stability,electronic structures,elastic properties and thermodynamic properties 被引量:8
17
作者 王峰 孙士杰 +3 位作者 于波 张峰 毛萍莉 刘正 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期203-212,共10页
The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ... The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions. 展开更多
关键词 Mg-Al alloy first-principles calculation electronic structure elastic properties thermodynamic properties
下载PDF
Mechanical properties and electronic structures of MgCu_2, Mg_2Ca and MgZn_2 Laves phases by first principles calculations 被引量:6
18
作者 毛萍莉 于波 +2 位作者 刘正 王峰 鞠阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2920-2929,共10页
Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculate... Mechanical properties and electronic structure of MgCu2, Mg2 Ca and MgZn2 phases were investigated by means of first principles calculations from CASTEP program based on density functional theory(DFT). The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heat of formation and cohesive energies showed that MgCu2 has the strongest alloying ability and structural stability. Elastic constants of MgCu2, Mg2 Ca and MgZn2 were calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio were derived. The calculated results show that MgCu2, Mg2 Ca and MgZn2 are all ductile phases. Among the three phases, MgCu2 has the strongest stiffness and the plasticity of MgZn2 phase is the best. Melting points of the three phases were predicted using cohesive energy and elastic constants. Density of states(DOS), Mulliken population, electron occupation number and charge density difference were discussed. Finally, Debye temperature was calculated and discussed. 展开更多
关键词 magnesium alloy MgCu2 Mg2Ca MgZn2 Laves phases electronic structure mechanical property Debye temperature
下载PDF
Electronic structure and flotation behavior of complex mineral jamesonite 被引量:2
19
作者 赵翠华 陈建华 +2 位作者 李玉琼 何茜 吴伯增 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期590-596,共7页
Electronic structures of complex mineral jamesonite were studied using density functional theory method together with their flotation behavior. The flotation behavior ofjamesonite is similar to that of stibnite, indic... Electronic structures of complex mineral jamesonite were studied using density functional theory method together with their flotation behavior. The flotation behavior ofjamesonite is similar to that of stibnite, indicating good floatability at pH below 6 and easy depression with NaOH, especially with lime. In weak alkaline condition, the flotation behavior ofjamesonite is close to that of galena. The coordination structure of Pb for jamesonite is more complex than that for galena. Sb in jamesonite possesses two coordinated modes, whereas Sb of stibnite is only 3-coordinated. Pb in galena is more active than that in jamesonite. Sb (3-coordination) in jamesonite is inactive, in contrast with that in stibnite. However, 4-coordination Sb in jamesonite is more active than 3-coordination Sb. HOMO orbitals of jamesonite and stibnite contain metal atoms, which contribute to the formation of adsorption configuration of CaOH^+ when there is lime; therefore, jamesonite and stibnite are easily depressed by lime. 展开更多
关键词 JAMESONITE electronic structure flotation behavior density functional theory
下载PDF
First-Principle Calculation of the Electronic Structure of Sb-Doped SrTiO_3 被引量:1
20
作者 贠江妮 张志勇 +1 位作者 邓周虎 张富春 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第9期1537-1542,共6页
The electronic structure,including band structure,density of states (DOS), and partial density of states of SrTi1-xSbxO3 with x = 0,0. 125,0.25,and 0.33 is calculated from the first principles of plane wave ultra-so... The electronic structure,including band structure,density of states (DOS), and partial density of states of SrTi1-xSbxO3 with x = 0,0. 125,0.25,and 0.33 is calculated from the first principles of plane wave ultra-soft pseudo-potential technology based on density function theory. The calculated results reveal that due to the electron doping,the Fermi level moves into the conduction bands for SrTi1-xSbxO3 with x = 0. 125 and the system shows metallic behavior. In addition, the DOS moves towards low energy and the optical band gap is broadened. The wide band gap and the low density of the states in the conduction band result in the transparency of the films. 展开更多
关键词 first principles SRTIO3 Sb-doping electronic structure transparent films
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部