The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the fi...The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.展开更多
The purpose of this study was to use. a three-component photoinitiation system comprising 1wt% CQ (camphorquinone), 2wt% DMAEMA (2-(dimethylamino) ethyl meth acrylate) and 2wt% ph^2I^+PF6^- (diphenyliodonium h...The purpose of this study was to use. a three-component photoinitiation system comprising 1wt% CQ (camphorquinone), 2wt% DMAEMA (2-(dimethylamino) ethyl meth acrylate) and 2wt% ph^2I^+PF6^- (diphenyliodonium hexafluorophosphate) to initiate the copolymerization of the matrix resins which combine bisphenol-S-bis (3-methacrylate-2-hydroxy propyl) ether (BisS-GMA) with the expanding monomer unsaturated spiro orthoesters 2-methylene-l,4,6-tdspiro[4,4] nonane (MTOSN), for minimizing the volumetric shrinkage that generally occurs during polymerization. It was hypothesized that MTOSN would expand volumetrically during polymerization under the three-component photoinitiator system and further reductions in volumetric shrinkage would be obtained. The performance study which consists of degree of conversion and condition of the ring-opening reactions of MTOSN, volumetric shrinkage and mechanical properties including tensile bond strength, compressive strength and Vicker's hardness were carried out respectively by Fourier transfer infrared, the dilatometer and the universal testing machine. The results supported that the dental composites based on the expanding monomer and three-component photoinitiator system engendered a greater decrease of volumetric shrinkage and better mechanieal properties.展开更多
This study proposes a facile, but precise method to back-calculate the effective modulus of nanocomposite interleaving plies. Adaptation of a conventional dry-reinforcement resin film infusion (RFI) approach allows in...This study proposes a facile, but precise method to back-calculate the effective modulus of nanocomposite interleaving plies. Adaptation of a conventional dry-reinforcement resin film infusion (RFI) approach allows interleaving neat epoxy layers (NE) with the epoxy-infused nanofibrous plies (XE) of constant thickness. The final cured nanocomposite laminate thus has the form (NE/XE)n, where “n” denotes the number of the repeats and enables clear distinction of the nanocomposite interlayers through the thickness. Mechanical testing of neat epoxy and laminated nanocomposite specimens can be coupled with the classical lamination theory for back-calculating in-plane elastic modulus of the individual epoxy-infused nanofibrous plies (EXE). Finite element analysis (FEA) and testing the laminated nanocomposite subject to flexural loading (3-point bending) are proposed to validate the analytically back-calculated EXE. It is shown that the FEA prediction incorporating EXE and testing for flexural modulus of (NE/XE)20 laminated nanocomposites correlate well and the results are within 5%. This finding suggests that the back-calculation scheme reported herein would be attractive for accurately determining the properties of an individual nanocomposite building block layer. The proposed framework is beneficial for modelling laminated structural composites incorporating XE-like nanocomposite interlayers.展开更多
Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clu...Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters(CNCs)consisting of different functional nanofillers for dental restoration.The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs.For a SiO_(2)–ZrO_(2) binary system,the SiO_(2)–ZrO_(2) CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties((133.3±4.7)MPa,(8.8±0.5)GPa,(371.1±13.3)MPa,and(64.5±0.7)HV for flexural strength,flexural modulus,compressive strength,and hardness of DRCs,respectively),despite the introduction of ZrO_(2) nanoparticles,whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties.Furthermore,heat treatment of the SiO_(2)-ZrO_(2) CNCs significantly improved the mechanical properties and radiopacity of the DRCs.The DRCs containing over 10%mass fraction ZrO_(2) nanoparticles can meet the requirement for radiopaque fillers.More importantly,this method can be expanded to ternary or quaternary systems.DRCs filled with SiO_(2)-ZrO_(2)-ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity(antibacterial ratio>99%)in addition to excellent mechanical properties and radiopacity.Thus,the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs.展开更多
用静电纺丝技术制造多层织物系统不具有的纳米材料结构,开发多元化的防水透气材料。采用静电纺丝法制备聚偏氟乙烯/醋酸纤维素(PVDF/CA)共混纳米纤维膜,探索共混膜的优化制备工艺。对混纺膜的基本性能和防水透气性能进行测试分析,结果表...用静电纺丝技术制造多层织物系统不具有的纳米材料结构,开发多元化的防水透气材料。采用静电纺丝法制备聚偏氟乙烯/醋酸纤维素(PVDF/CA)共混纳米纤维膜,探索共混膜的优化制备工艺。对混纺膜的基本性能和防水透气性能进行测试分析,结果表明,共混膜的优化制备工艺参数为:静电纺丝纺丝液的质量分数13%,溶剂DMAC和丙酮的体积比6/4,电压13 k V,接收距离17 cm,纺丝液流量0.6 m L/h。当其溶质PVDF和CA的质量比为90/10时,混纺膜的综合性能较优,虽然透气性能略微下降,但其防水性能、耐静水压和力学性能有很大改善。展开更多
文摘The micro/nano-scale indentation tests were performed to explore the performance of bisphenol-α-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin composites. The effect of the filling content of nano-SiO2 particles on the mechanical properties of the dental composites was studied as well. The experimental results showed that the incorporation of the nano-SiO2 particles at low concentrations (up to 10 wt.%) can apparently increase the hardness and elastic modulus of the dental rein composites. The plasticity index indicates a best elastic recovery capability at a proper amount (4 wt.%) of the nanoparticles. Combined with the infrared spectrum, the mechanical enhancement mechanisms of the dental resin composites were analyzed.
基金Funded by the National Natural Science Foundation of China(No.50673065)
文摘The purpose of this study was to use. a three-component photoinitiation system comprising 1wt% CQ (camphorquinone), 2wt% DMAEMA (2-(dimethylamino) ethyl meth acrylate) and 2wt% ph^2I^+PF6^- (diphenyliodonium hexafluorophosphate) to initiate the copolymerization of the matrix resins which combine bisphenol-S-bis (3-methacrylate-2-hydroxy propyl) ether (BisS-GMA) with the expanding monomer unsaturated spiro orthoesters 2-methylene-l,4,6-tdspiro[4,4] nonane (MTOSN), for minimizing the volumetric shrinkage that generally occurs during polymerization. It was hypothesized that MTOSN would expand volumetrically during polymerization under the three-component photoinitiator system and further reductions in volumetric shrinkage would be obtained. The performance study which consists of degree of conversion and condition of the ring-opening reactions of MTOSN, volumetric shrinkage and mechanical properties including tensile bond strength, compressive strength and Vicker's hardness were carried out respectively by Fourier transfer infrared, the dilatometer and the universal testing machine. The results supported that the dental composites based on the expanding monomer and three-component photoinitiator system engendered a greater decrease of volumetric shrinkage and better mechanieal properties.
文摘This study proposes a facile, but precise method to back-calculate the effective modulus of nanocomposite interleaving plies. Adaptation of a conventional dry-reinforcement resin film infusion (RFI) approach allows interleaving neat epoxy layers (NE) with the epoxy-infused nanofibrous plies (XE) of constant thickness. The final cured nanocomposite laminate thus has the form (NE/XE)n, where “n” denotes the number of the repeats and enables clear distinction of the nanocomposite interlayers through the thickness. Mechanical testing of neat epoxy and laminated nanocomposite specimens can be coupled with the classical lamination theory for back-calculating in-plane elastic modulus of the individual epoxy-infused nanofibrous plies (EXE). Finite element analysis (FEA) and testing the laminated nanocomposite subject to flexural loading (3-point bending) are proposed to validate the analytically back-calculated EXE. It is shown that the FEA prediction incorporating EXE and testing for flexural modulus of (NE/XE)20 laminated nanocomposites correlate well and the results are within 5%. This finding suggests that the back-calculation scheme reported herein would be attractive for accurately determining the properties of an individual nanocomposite building block layer. The proposed framework is beneficial for modelling laminated structural composites incorporating XE-like nanocomposite interlayers.
基金the National Key Research and Development Program of China(2016YFA0201701)the National Natural Science Foundation of China(21878015).
文摘Multifunctional fillers are greatly required for dental resin composites(DRCs).In this work,a spray dryer with a three-fluid nozzle was applied for the first time to construct high-performance complex nanoparticle clusters(CNCs)consisting of different functional nanofillers for dental restoration.The application of a three-fluid nozzle can effectively avoid the aggregation of different nanoparticles with opposite zeta potentials before the spray drying process in order to construct regularly shaped CNCs.For a SiO_(2)–ZrO_(2) binary system,the SiO_(2)–ZrO_(2) CNCs constructed using a three-fluid nozzle maintained their excellent mechanical properties((133.3±4.7)MPa,(8.8±0.5)GPa,(371.1±13.3)MPa,and(64.5±0.7)HV for flexural strength,flexural modulus,compressive strength,and hardness of DRCs,respectively),despite the introduction of ZrO_(2) nanoparticles,whereas their counterparts constructed using a two-fluid nozzle showed significantly decreased mechanical properties.Furthermore,heat treatment of the SiO_(2)-ZrO_(2) CNCs significantly improved the mechanical properties and radiopacity of the DRCs.The DRCs containing over 10%mass fraction ZrO_(2) nanoparticles can meet the requirement for radiopaque fillers.More importantly,this method can be expanded to ternary or quaternary systems.DRCs filled with SiO_(2)-ZrO_(2)-ZnO CNCs with a ratio of 56:10:4 displayed high antibacterial activity(antibacterial ratio>99%)in addition to excellent mechanical properties and radiopacity.Thus,the three-fluid nozzle spray drying technique holds great potential for the efficient construction of multifunctional cluster fillers for DRCs.
文摘用静电纺丝技术制造多层织物系统不具有的纳米材料结构,开发多元化的防水透气材料。采用静电纺丝法制备聚偏氟乙烯/醋酸纤维素(PVDF/CA)共混纳米纤维膜,探索共混膜的优化制备工艺。对混纺膜的基本性能和防水透气性能进行测试分析,结果表明,共混膜的优化制备工艺参数为:静电纺丝纺丝液的质量分数13%,溶剂DMAC和丙酮的体积比6/4,电压13 k V,接收距离17 cm,纺丝液流量0.6 m L/h。当其溶质PVDF和CA的质量比为90/10时,混纺膜的综合性能较优,虽然透气性能略微下降,但其防水性能、耐静水压和力学性能有很大改善。