期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Size-dependent modal interactions of a piezoelectrically laminated microarch resonator with 3:1 internal resonance 被引量:1
1
作者 A.NIKPOURIAN M.R.GHAZAVI S.AZIZI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第10期1517-1538,共22页
The nonlinear interactions of a microarch resonator with 3:1 internal resonance are studied.The microarch is subjected to a combination of direct current(DC)and alternating current(AC)electric voltages.Thin piezoelect... The nonlinear interactions of a microarch resonator with 3:1 internal resonance are studied.The microarch is subjected to a combination of direct current(DC)and alternating current(AC)electric voltages.Thin piezoelectric layers are thoroughly bonded on the top and bottom surfaces of the microarch.The piezoelectric actuation is not only used to modulate the stiffness and resonance frequency of the resonator but also to provide the suitable linear frequency ratio for the activation of the internal resonance.The size effect is incorporated by using the so-called modified strain gradient theory.The system is highly nonlinear due to the co-existence of the initial curvature,the mid-plane stretching resulting from clamped anchors,and the electrostatic excitation.The eigenvalue problem is solved to conduct a frequency analysis and identify the possible regions for activating the internal resonance.The effects of the piezoelectric actuation,the electric excitation,and the small-scale effect are investigated on the internal resonance.Exclusive nonlinear phenomena such as Hopf bifurcation and hysteresis are identified in the microarch response.It is shown that by applying appropriate piezoelectric actuation,one is able to activate microarch internal resonance regardless of the initial rise level of the microarch.It is also disclosed that among all the parameters,AC electric voltage has the greatest effect on the energy exchange between the interacting modes.The results can be used to design resonators and internal resonance based micro-electro-mechanical system(MEMS)energy harvesters. 展开更多
关键词 microarch resonator internal resonance multiple time scales method micro-electro-mechanical system(MEMS) piezoelectric actuation electrostatic excitation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部