Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigmen...Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigments, and other excipients, are directly sprayed onto the surface of the solid dosage forms through an electrostatic gun without using any organic solvent or water. The deposited coating powders are further cured to form a coating film. Electrostatic powder coating technology has many advantages compared to other pharmaceutical coating methods. It can eliminate the limitations caused by the organic solvent in solvent coating such as environmental issues and health problems. And electrostatic powder coating technology also surpasses aqueous coating due to its shorter processing time and less energy consumption, leading to a lower overall cost. Furthermore, the utilization of electrical attraction can promote the movement of coating powders towards the substrate, leading to an enhanced coating powder adhesion and coating efficiency, which make it more promising compared to other dry coating technologies. The objective of this review is to summarize the coating principles, apparatus, and formulations of different electrostatic powder coating technologies, giving their advantages and limitations and also analyzing the future application in the industry for each technology展开更多
Powder coating is an important process in the food industry,especially for snack foods such as potato chips,to create variety in food products.Electrostatic coating has been adopted in order to provide better transfer...Powder coating is an important process in the food industry,especially for snack foods such as potato chips,to create variety in food products.Electrostatic coating has been adopted in order to provide better transfer efficiency and lower the dust produced during coating.Studying the effect of electrode voltage on coating efficiency and evenness of baked potato chips using the developed electrostatic powder coating system was the main purpose of this research.Different types of NaCl(refined and table salts)were coated on baked potato chips at 0,30,40,50,60,and 70 kV.After coating with either refined or table salt,transfer efficiency,adhesion after coating,coating evenness and texture of samples were determined.Higher transfer efficiency,adhesion and coating evenness were observed when electrostatic coating was conducted at 30-50 kV.Most samples with higher transfer efficiency,adhesion and evenness were obtained after electrostatic coating.However,it did not significantly affect hardness of baked potato chips.展开更多
We report a new structure for broadband antireflection coating by dip-coating technique, which has minimal cost and is compatible with large-scale manufacturing. The coatings are prepared by depositing SiO2 sol-gel fi...We report a new structure for broadband antireflection coating by dip-coating technique, which has minimal cost and is compatible with large-scale manufacturing. The coatings are prepared by depositing SiO2 sol-gel film on a glass substrate, subsequently depositing SiO2 single-layer particle coating through electrostatic attraction, and depositing a final very thin SiO2 sol-gel film to improve the mechanical strength of the whole coating structure. The refractive index of the structure changes gradually from the top to the substrate. The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400-1 400 nm and in the incidence angle range from 0° to at least 45°. The mechanical strength is immensely improved because of the additional thin SiO2 sol-gel layer. The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.展开更多
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such a...The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.展开更多
文摘Derived from dry powder coating of metals, electrostatic powder coating for pharmaceuticals is a technology for coating drug solid dosage forms. In this technology, coating powders, containing coating polymers, pigments, and other excipients, are directly sprayed onto the surface of the solid dosage forms through an electrostatic gun without using any organic solvent or water. The deposited coating powders are further cured to form a coating film. Electrostatic powder coating technology has many advantages compared to other pharmaceutical coating methods. It can eliminate the limitations caused by the organic solvent in solvent coating such as environmental issues and health problems. And electrostatic powder coating technology also surpasses aqueous coating due to its shorter processing time and less energy consumption, leading to a lower overall cost. Furthermore, the utilization of electrical attraction can promote the movement of coating powders towards the substrate, leading to an enhanced coating powder adhesion and coating efficiency, which make it more promising compared to other dry coating technologies. The objective of this review is to summarize the coating principles, apparatus, and formulations of different electrostatic powder coating technologies, giving their advantages and limitations and also analyzing the future application in the industry for each technology
基金This work was supported by a grant from Thailand Research Funding and Office of the Higher Education Commission,contract no.MRG6080261.
文摘Powder coating is an important process in the food industry,especially for snack foods such as potato chips,to create variety in food products.Electrostatic coating has been adopted in order to provide better transfer efficiency and lower the dust produced during coating.Studying the effect of electrode voltage on coating efficiency and evenness of baked potato chips using the developed electrostatic powder coating system was the main purpose of this research.Different types of NaCl(refined and table salts)were coated on baked potato chips at 0,30,40,50,60,and 70 kV.After coating with either refined or table salt,transfer efficiency,adhesion after coating,coating evenness and texture of samples were determined.Higher transfer efficiency,adhesion and coating evenness were observed when electrostatic coating was conducted at 30-50 kV.Most samples with higher transfer efficiency,adhesion and evenness were obtained after electrostatic coating.However,it did not significantly affect hardness of baked potato chips.
文摘We report a new structure for broadband antireflection coating by dip-coating technique, which has minimal cost and is compatible with large-scale manufacturing. The coatings are prepared by depositing SiO2 sol-gel film on a glass substrate, subsequently depositing SiO2 single-layer particle coating through electrostatic attraction, and depositing a final very thin SiO2 sol-gel film to improve the mechanical strength of the whole coating structure. The refractive index of the structure changes gradually from the top to the substrate. The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400-1 400 nm and in the incidence angle range from 0° to at least 45°. The mechanical strength is immensely improved because of the additional thin SiO2 sol-gel layer. The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.
文摘The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.