The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
Electrostatic discharge(ESD)event usually destroys the electrical properties of dielectric films,resulting in product failure.In this work,the breakdown characteristic of machine mode(MM)ESD on three different nano si...Electrostatic discharge(ESD)event usually destroys the electrical properties of dielectric films,resulting in product failure.In this work,the breakdown characteristic of machine mode(MM)ESD on three different nano size films of head gimble assemble are obtained experimentally.The breakdown voltage and thickness parameters show a positive proportional relationship,but they are generally very low and have large discrete characteristics(~30%).The maximum and minimum breakdown voltages of the tested samples are 1.08 V and 0.46 V,which are far lower than the requirement of the current standard(25 V).In addition,the judgment criterion of product damage is given,and the relationship between discharge voltage polarity,initial resistance and breakdown voltage is studied.Finally,the theoretical analysis of the breakdown characteristic law has been given.展开更多
A robust electron device called the enhanced gated-diode-triggered silicon-controlled rectifier (EGDTSCR) for electrostatic discharge (ESD) protection applications has been proposed and implemented in a 0.18-μm 5-V/2...A robust electron device called the enhanced gated-diode-triggered silicon-controlled rectifier (EGDTSCR) for electrostatic discharge (ESD) protection applications has been proposed and implemented in a 0.18-μm 5-V/24-V BCD process. The proposed EGDTSCR is constructed by adding two gated diodes into a conventional ESD device called the modified lateral silicon-controlled rectifier (MLSCR). With the shunting effect of the surface gated diode path, the proposed EGDTSCR, with a width of 50 μm, exhibits a higher failure current (i.e., 3.82 A) as well as a higher holding voltage (i.e., 10.21 V) than the MLSCR.展开更多
A novel diode string-triggered gated-Pi N junction device, which is fabricated in a standard 65-nm complementary metal-oxide semiconductor(CMOS) technology, is proposed in this paper. An embedded gated-Pi N junction...A novel diode string-triggered gated-Pi N junction device, which is fabricated in a standard 65-nm complementary metal-oxide semiconductor(CMOS) technology, is proposed in this paper. An embedded gated-Pi N junction structure is employed to reduce the diode string leakage current to 13 n A/μm in a temperature range from 25°C to 85°C. To provide the effective electrostatic discharge(ESD) protection in multi-voltage power supply, the triggering voltage of the novel device can be adjusted through redistributing parasitic resistance instead of changing the stacked diode number.展开更多
The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the devic...The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the device simulation, a mathematical model is built to get a more in-depth insight into this phenomenon. The theoretical studies are verified by the transmission-line-pulsing (TLP) test results of the modified DTSCR structure, which is realized in a 65-nm complementary metal-oxide-semiconductor (CMOS) process. The detailed analysis of the physical mechanism is used to provide predictions as the DTSCR-based protection scheme is required. In addition, a method is also presented to achieve the tradeoff between the leakage and trigger voltage in DTSCR.展开更多
In this study,the characteristics of Electromagnetic(EM) radiation caused by Electrostatic Discharges(ESDs) from metal spheres charged to voltages less than 1 kV are examined experimentally.Our experimental system con...In this study,the characteristics of Electromagnetic(EM) radiation caused by Electrostatic Discharges(ESDs) from metal spheres charged to voltages less than 1 kV are examined experimentally.Our experimental system consists of a pair of spherical electrodes of different diameters,a 1-18 GHz-bandwidth horn antenna and a 20-GHz-bandwidth digitizing oscilloscope.Polarization,waveform duration and peaks of antenna-received voltages from the EM field radiation are measured in order to clarify the EM radiation mechanism.The ratio of the received voltages between the antenna arrangements of the field polarization parallel and perpendicular to the spark pass is 18 to 20 dB.The polarities of the antenna-received voltages are the same as those of the charge voltages across the gap.Moreover,the waveform duration and the first peaks increase with an increase in the diameters of the spherical electrodes.Consequently,we find that the polarization,waveform duration and first peaks of the EM field radiation can be explained by a dipole antenna structure,which makes the spark part of the spherical electrodes a feeding point on the straight line passing through the centres of the two spheres.展开更多
A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of el...A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of electrostatic discharge(ESD) occur on the surface when the deposited charges exceed a threshold amount.In this paper,the mechanism of this ESD is discussed.The ground simulation experiment of the ESD using spacecraft material under surface charging is described,and a novel ESD protecting method for high-voltage solar array,i.e.an active protecting method based on the local strong electric field array is proposed.The results show that the reversal potential gradient field between the cover surface and the substrate materials of high-voltage solar array is a triggering factor for the ESD on the array.The threshold voltage for the ESD occurring on the surface is about 500 V.The charged particles could be deflected using the electric field active protecting method,and hence the ESD on the surface is avoided even when the voltage on the conductor array increases to a certain value.These results pave the way for further developing the protecting measures for high-voltage solar arrays.展开更多
A novel silicon controlled rectifier(SCR) with high holding voltage(Vh) for electrostatic discharge(ESD) protection is proposed and investigated in this paper. The proposed SCR obtains high Vhby adding a long N...A novel silicon controlled rectifier(SCR) with high holding voltage(Vh) for electrostatic discharge(ESD) protection is proposed and investigated in this paper. The proposed SCR obtains high Vhby adding a long N+ layer(LN+) and a long P+ layer(LP+), which divide the conventional low voltage trigger silicon controlled rectifier(LVTSCR) into two SCRs(SCR1: P+/Nwell/Pwell/N+ and SCR2: P+/LN+/LP+/N+) with a shared emitter. Under the low ESD current(IESD), the two SCRs are turned on at the same time to induce the first snapback with high V_h(V_(h1)). As the IESDincreases, the SCR2 will be turned off because of its low current gain. Therefore, the IESDwill flow through the longer SCR1 path, bypassing SCR2, which induces the second snapback with high V_h(V_(h2)). The anti-latch-up ability of the proposed SCR for ESD protection is proved by a dynamic TLP-like(Transmission Line Pulse-like) simulation. An optimized V_(h2) of 7.4 V with a maximum failure current(I_(t2)) of 14.7 m A/μm is obtained by the simulation.展开更多
Gate-grounded n-channel metal-oxide-semiconductor(GGNMOS)devices have been widely implemented as power clamps to protect semiconductor devices from electrostatic discharge stress owing to their simple construction,eas...Gate-grounded n-channel metal-oxide-semiconductor(GGNMOS)devices have been widely implemented as power clamps to protect semiconductor devices from electrostatic discharge stress owing to their simple construction,easy triggering,and low power dissipation.We present a novel I-V characterization of the GGNMOS used as the power clamp in complementary metal-oxide-semiconductor circuits as a result of switching the ESD paths under different impact energies.This special effect could cause an unexpected latch-up or pre-failure phenomenon in some applications with relatively large capacitances from power supply to power ground,and thus should be urgently analyzed and resolved.Transmission-linepulse,human-body-modal,and light-emission tests were performed to explore the root cause.展开更多
A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection de...A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.展开更多
Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuratio...Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuration and the circulation spraying of water were employed in the method. The efficient electrostatic precipitation for adhesive and fine dusts can be accomplished without any drain water during a long operating period. The fundamental structure, discharge characteristics, mechanism of spraying and precipitation principle of the electrostatic precipitation using CDSW were described and analyzed. The V I characteristics, spraying state, supplying water quantity, influence of temperature and clean of the electrodes were researched in series experiments. The treating effects of circulating spraying using the corona plasma at the same time of electrostatic precipitation were investigated. The fundamental theories and experimental data were proposed, in order to effectively remove the adhesive dusts from flue gas using CDSW in practice.展开更多
A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma.An SDBD plasma reactor based on the double spiral structure is introduced in this ...A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma.An SDBD plasma reactor based on the double spiral structure is introduced in this paper.To study the discharge mechanism of SDBD,an equivalent circuit model was proposed based on the analysis of the micro-discharge process of SDBD.Matlab/Simulink is used to simulate and compare the voltage-current waves,Lissajous and discharge power with the experimental results.The consistency of the results verifies the validity of the SDBD equivalent circuit model.Maxwell software based on the finite elements method is used to analyze the electrostatic field distribution of the device,which can better explain the relationship between the discharge image and the electrostatic field distribution.The combination of equivalent circuit simulation and electrostatic field simulation can provide better guidance for optimizing a plasma generator.Finally,the device is used to treat PM2.5 and formaldehyde.The test results show that the degradation rate of PM2.5 can reach 78% after 24 min,and formaldehyde is about 31.5% after 10m in of plasma treatment.展开更多
Characteristic measurement of contact discharge currents are made through a hand-held metal rod from charged human body. Correlation coefficients are obtained, through Statistic Package for Social Science (SPSS), for ...Characteristic measurement of contact discharge currents are made through a hand-held metal rod from charged human body. Correlation coefficients are obtained, through Statistic Package for Social Science (SPSS), for various charge voltages, which is based on the effect test of electrode contact approach speeds on discharge current parameters of current peaks, maximum rising slope and spark lengths. Discharge parameters at charge voltage 300V are independent on approach speed. For charge voltages equal to and higher than 500V, the contact approach speed has strong positive cor- relation with discharge parameters of the peak current and the maximum rising slope, whereas has strong negative correlation with the spark length.展开更多
This article firstly describes the main technical parameters and performance of the high power supply of electrostatic precipitator, and then describes the structure, principle and characteristic of power supply of el...This article firstly describes the main technical parameters and performance of the high power supply of electrostatic precipitator, and then describes the structure, principle and characteristic of power supply of electrostatic precipitator, and finally analyses the common faults of power supply of electrostatic precipitator in the operation and puts forward the methods of dealing with breakdown. Operation results show that the system is stable and reliable, and overall performance and the efficiency of dust control have been improved significantly. The scheme has been well applied in the field of environmental protection and dust removal.展开更多
A cylindrical dc coaxial glow discharge system with inner grid cathode was designed for ion confinement, and success- fully operated with low discharge current. The plasma is formed inside the cylindrical grid cathode...A cylindrical dc coaxial glow discharge system with inner grid cathode was designed for ion confinement, and success- fully operated with low discharge current. The plasma is formed inside the cylindrical grid cathode. The discharge cur- rentvoltage characteristic curves and Paschen curve are obtained at different gas pressures. Langmuir probes are used to determine the electron temperature and the plasma density. The electron energy distribution functions indicated that, two groups of electrons, appear in radial interval from r = 12 mm up to r = 5 mm. One group of electrons with most probable energy around 1 eV appeared from r = 5 mm up to r = 0. The electron temperature Te is increased with increasing the current and also with moving from the center toward the grid cathode. Poisson’s equation is used to calculate the plasma density at different radial positions. The plasma density measured by the single probe is around 1015 m-3. A comparison is obtained between calculated plasma density and that measured by Langmuir probes. Experimental and calculated results have the same profile.展开更多
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘Electrostatic discharge(ESD)event usually destroys the electrical properties of dielectric films,resulting in product failure.In this work,the breakdown characteristic of machine mode(MM)ESD on three different nano size films of head gimble assemble are obtained experimentally.The breakdown voltage and thickness parameters show a positive proportional relationship,but they are generally very low and have large discrete characteristics(~30%).The maximum and minimum breakdown voltages of the tested samples are 1.08 V and 0.46 V,which are far lower than the requirement of the current standard(25 V).In addition,the judgment criterion of product damage is given,and the relationship between discharge voltage polarity,initial resistance and breakdown voltage is studied.Finally,the theoretical analysis of the breakdown characteristic law has been given.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874098 and 61974017)the Fundamental Research Project for Central Universities,China(Grant No.ZYGX2018J025).
文摘A robust electron device called the enhanced gated-diode-triggered silicon-controlled rectifier (EGDTSCR) for electrostatic discharge (ESD) protection applications has been proposed and implemented in a 0.18-μm 5-V/24-V BCD process. The proposed EGDTSCR is constructed by adding two gated diodes into a conventional ESD device called the modified lateral silicon-controlled rectifier (MLSCR). With the shunting effect of the surface gated diode path, the proposed EGDTSCR, with a width of 50 μm, exhibits a higher failure current (i.e., 3.82 A) as well as a higher holding voltage (i.e., 10.21 V) than the MLSCR.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00606)
文摘A novel diode string-triggered gated-Pi N junction device, which is fabricated in a standard 65-nm complementary metal-oxide semiconductor(CMOS) technology, is proposed in this paper. An embedded gated-Pi N junction structure is employed to reduce the diode string leakage current to 13 n A/μm in a temperature range from 25°C to 85°C. To provide the effective electrostatic discharge(ESD) protection in multi-voltage power supply, the triggering voltage of the novel device can be adjusted through redistributing parasitic resistance instead of changing the stacked diode number.
基金Project supported by the Beijing Municipal Natural Science Foundation,China(Grant No.4162030)the National Science and Technology Major Project of China(Grant No.2013ZX02303002)
文摘The comprehensive understanding of the structure-dependent electrostatic discharge behaviors in a conventional diode-triggered silicon controlled rectifier (DTSCR) is presented in this paper. Combined with the device simulation, a mathematical model is built to get a more in-depth insight into this phenomenon. The theoretical studies are verified by the transmission-line-pulsing (TLP) test results of the modified DTSCR structure, which is realized in a 65-nm complementary metal-oxide-semiconductor (CMOS) process. The detailed analysis of the physical mechanism is used to provide predictions as the DTSCR-based protection scheme is required. In addition, a method is also presented to achieve the tradeoff between the leakage and trigger voltage in DTSCR.
文摘In this study,the characteristics of Electromagnetic(EM) radiation caused by Electrostatic Discharges(ESDs) from metal spheres charged to voltages less than 1 kV are examined experimentally.Our experimental system consists of a pair of spherical electrodes of different diameters,a 1-18 GHz-bandwidth horn antenna and a 20-GHz-bandwidth digitizing oscilloscope.Polarization,waveform duration and peaks of antenna-received voltages from the EM field radiation are measured in order to clarify the EM radiation mechanism.The ratio of the received voltages between the antenna arrangements of the field polarization parallel and perpendicular to the spark pass is 18 to 20 dB.The polarities of the antenna-received voltages are the same as those of the charge voltages across the gap.Moreover,the waveform duration and the first peaks increase with an increase in the diameters of the spherical electrodes.Consequently,we find that the polarization,waveform duration and first peaks of the EM field radiation can be explained by a dipole antenna structure,which makes the spark part of the spherical electrodes a feeding point on the straight line passing through the centres of the two spheres.
基金Project supported by National Natural Science Foundation of China(51177173), Elec- tromagnetic Environment Effect Key Laboratory Foundation(9140C87010313 JB34004).
文摘A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of electrostatic discharge(ESD) occur on the surface when the deposited charges exceed a threshold amount.In this paper,the mechanism of this ESD is discussed.The ground simulation experiment of the ESD using spacecraft material under surface charging is described,and a novel ESD protecting method for high-voltage solar array,i.e.an active protecting method based on the local strong electric field array is proposed.The results show that the reversal potential gradient field between the cover surface and the substrate materials of high-voltage solar array is a triggering factor for the ESD on the array.The threshold voltage for the ESD occurring on the surface is about 500 V.The charged particles could be deflected using the electric field active protecting method,and hence the ESD on the surface is avoided even when the voltage on the conductor array increases to a certain value.These results pave the way for further developing the protecting measures for high-voltage solar arrays.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376080 and 61674027)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2014A030313736 and 2016A030311022)
文摘A novel silicon controlled rectifier(SCR) with high holding voltage(Vh) for electrostatic discharge(ESD) protection is proposed and investigated in this paper. The proposed SCR obtains high Vhby adding a long N+ layer(LN+) and a long P+ layer(LP+), which divide the conventional low voltage trigger silicon controlled rectifier(LVTSCR) into two SCRs(SCR1: P+/Nwell/Pwell/N+ and SCR2: P+/LN+/LP+/N+) with a shared emitter. Under the low ESD current(IESD), the two SCRs are turned on at the same time to induce the first snapback with high V_h(V_(h1)). As the IESDincreases, the SCR2 will be turned off because of its low current gain. Therefore, the IESDwill flow through the longer SCR1 path, bypassing SCR2, which induces the second snapback with high V_h(V_(h2)). The anti-latch-up ability of the proposed SCR for ESD protection is proved by a dynamic TLP-like(Transmission Line Pulse-like) simulation. An optimized V_(h2) of 7.4 V with a maximum failure current(I_(t2)) of 14.7 m A/μm is obtained by the simulation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61974017)。
文摘Gate-grounded n-channel metal-oxide-semiconductor(GGNMOS)devices have been widely implemented as power clamps to protect semiconductor devices from electrostatic discharge stress owing to their simple construction,easy triggering,and low power dissipation.We present a novel I-V characterization of the GGNMOS used as the power clamp in complementary metal-oxide-semiconductor circuits as a result of switching the ESD paths under different impact energies.This special effect could cause an unexpected latch-up or pre-failure phenomenon in some applications with relatively large capacitances from power supply to power ground,and thus should be urgently analyzed and resolved.Transmission-linepulse,human-body-modal,and light-emission tests were performed to explore the root cause.
基金supported by the National Natural Science Foundation of China (Grant No. 61904110)。
文摘A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.
文摘Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuration and the circulation spraying of water were employed in the method. The efficient electrostatic precipitation for adhesive and fine dusts can be accomplished without any drain water during a long operating period. The fundamental structure, discharge characteristics, mechanism of spraying and precipitation principle of the electrostatic precipitation using CDSW were described and analyzed. The V I characteristics, spraying state, supplying water quantity, influence of temperature and clean of the electrodes were researched in series experiments. The treating effects of circulating spraying using the corona plasma at the same time of electrostatic precipitation were investigated. The fundamental theories and experimental data were proposed, in order to effectively remove the adhesive dusts from flue gas using CDSW in practice.
基金National Natural Science Foundation of China (No. 11575066).
文摘A surface dielectric barrier discharge (SDBD) can discharge at atmospheric pressure and produce a large area of low-temperature plasma.An SDBD plasma reactor based on the double spiral structure is introduced in this paper.To study the discharge mechanism of SDBD,an equivalent circuit model was proposed based on the analysis of the micro-discharge process of SDBD.Matlab/Simulink is used to simulate and compare the voltage-current waves,Lissajous and discharge power with the experimental results.The consistency of the results verifies the validity of the SDBD equivalent circuit model.Maxwell software based on the finite elements method is used to analyze the electrostatic field distribution of the device,which can better explain the relationship between the discharge image and the electrostatic field distribution.The combination of equivalent circuit simulation and electrostatic field simulation can provide better guidance for optimizing a plasma generator.Finally,the device is used to treat PM2.5 and formaldehyde.The test results show that the degradation rate of PM2.5 can reach 78% after 24 min,and formaldehyde is about 31.5% after 10m in of plasma treatment.
基金Supported by the National Natural Science Foundation of China (No.60473021)
文摘Characteristic measurement of contact discharge currents are made through a hand-held metal rod from charged human body. Correlation coefficients are obtained, through Statistic Package for Social Science (SPSS), for various charge voltages, which is based on the effect test of electrode contact approach speeds on discharge current parameters of current peaks, maximum rising slope and spark lengths. Discharge parameters at charge voltage 300V are independent on approach speed. For charge voltages equal to and higher than 500V, the contact approach speed has strong positive cor- relation with discharge parameters of the peak current and the maximum rising slope, whereas has strong negative correlation with the spark length.
文摘This article firstly describes the main technical parameters and performance of the high power supply of electrostatic precipitator, and then describes the structure, principle and characteristic of power supply of electrostatic precipitator, and finally analyses the common faults of power supply of electrostatic precipitator in the operation and puts forward the methods of dealing with breakdown. Operation results show that the system is stable and reliable, and overall performance and the efficiency of dust control have been improved significantly. The scheme has been well applied in the field of environmental protection and dust removal.
文摘A cylindrical dc coaxial glow discharge system with inner grid cathode was designed for ion confinement, and success- fully operated with low discharge current. The plasma is formed inside the cylindrical grid cathode. The discharge cur- rentvoltage characteristic curves and Paschen curve are obtained at different gas pressures. Langmuir probes are used to determine the electron temperature and the plasma density. The electron energy distribution functions indicated that, two groups of electrons, appear in radial interval from r = 12 mm up to r = 5 mm. One group of electrons with most probable energy around 1 eV appeared from r = 5 mm up to r = 0. The electron temperature Te is increased with increasing the current and also with moving from the center toward the grid cathode. Poisson’s equation is used to calculate the plasma density at different radial positions. The plasma density measured by the single probe is around 1015 m-3. A comparison is obtained between calculated plasma density and that measured by Langmuir probes. Experimental and calculated results have the same profile.