运用FLUENT对电袋除尘器电场区域内流场、电晕电场、荷电粒子运动轨迹进行数值模拟,确定静电区捕集粉尘的最小粒径,优化静电区集尘板的最佳开孔范围.首先数值模拟了电袋除尘器静电区的流场分布和电场分布,在此基础上,分别数值模拟了粒径...运用FLUENT对电袋除尘器电场区域内流场、电晕电场、荷电粒子运动轨迹进行数值模拟,确定静电区捕集粉尘的最小粒径,优化静电区集尘板的最佳开孔范围.首先数值模拟了电袋除尘器静电区的流场分布和电场分布,在此基础上,分别数值模拟了粒径为0.5、1.5和2.5μm的粒子在外加电压为45 k V的电场中的运动轨迹和速度分布,并进行了数值分析.模拟结果表明:在该除尘器结构及模拟条件下,除尘器静电区通道内最小捕集粒径为1.5μm;在静电区通道内集尘板X方向的最佳开孔范围是0.324-1.25 m.研究结果为电袋除尘器静电区内结构的设计和优化提供理论参考.展开更多
文摘运用FLUENT对电袋除尘器电场区域内流场、电晕电场、荷电粒子运动轨迹进行数值模拟,确定静电区捕集粉尘的最小粒径,优化静电区集尘板的最佳开孔范围.首先数值模拟了电袋除尘器静电区的流场分布和电场分布,在此基础上,分别数值模拟了粒径为0.5、1.5和2.5μm的粒子在外加电压为45 k V的电场中的运动轨迹和速度分布,并进行了数值分析.模拟结果表明:在该除尘器结构及模拟条件下,除尘器静电区通道内最小捕集粒径为1.5μm;在静电区通道内集尘板X方向的最佳开孔范围是0.324-1.25 m.研究结果为电袋除尘器静电区内结构的设计和优化提供理论参考.