Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spect...Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.展开更多
Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (...Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (ESA) method. The whole self-assemble process, the function of surfactant and the effect of TiO_2 slurry′s concentration to the self-assemble were discussed. The isoelectric point of TiO_2 slurry measured by experiment is 6.8. The results show that whatever the concentration of the TiO_2 dispersion, a flat and compact adsorbed monolayer on the optic fiber can be built in a stable dispersion at lower pH. There is a adsorbed equilibrium on the substrate (fiber)/solution interface when enough time of incubation is given. A rough and loosen adsorbed layer is formed on the fiber surface by immersed the substrate in a high pH dispersion (pH>10) because the presence of hydroxyl on particle surface. Film thickness can be controlled by controlling the number of layers in the film.展开更多
Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin f...Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.展开更多
Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy s...Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy synthesis,nontoxicity,abundant natural source and smaller volume expansion than Si.However,low intrinsic electrical conductivity,low initial Coulombic efficiency(ICE)and inevitable volume expansion(~200%)impede its practical application.Here we fabricate SiO/wrinkled MXene composite(SiO-WM)by an electrostatic self-assembly method.Importantly,this method is simple,scalable and taking into account all the issues of SiO.As a result,the SiO-WM exhibits imp roved rate capability,cycling performance and ICE than bare SiO.展开更多
Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanosp...Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanospheres are constructed by two-step hydrothermal method.In order to improve the chemical activity of ZnCo_(2)S_(4),ZnCo_(2)S_(4)is activated using cetyltrimethylammonium bromide(CTAB).Then,MXene nanosheets are fixed on the surface of ZnCo_(2)S_(4)by electrostatic selfassembly method to improve the specific surface area of ZnCo_(2)S_(4)and MXene-wrapped ZnCo_(2)S_(4)composite is prepared in this work.Owing to the synergy effect between MXene nanosheets and ZnCo_(2)S_(4)core-shell nanospheres,the as-prepared composite displays fast ion transfer rate and charge/discharge process.The capacity of the MXenewrapped ZnCo_(2)S_(4)composite can reach 1072 F·g^(-1),which is far larger than that of ZnCo_(2)S_(4)(407 F·g^(-1))at 1 A·g^(-1).An ASC device is assembled,which delivers 1.7 V potential window and superior cyclic stability(95.41%capacitance retention).Furthermore,energy density of this device is up to 30.46 Wh·kg^(-1)at a power density of850 W·kg^(-1).The above results demonstrate that MXenewrapped ZnCo_(2)S_(4)composite has great application prospects in electrochemical energy storage field.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with...Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios,it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization.Herein,on basis of 3D-printed polyelectrolyte-based vascular grafts,a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described.A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles,in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used.Further,dual bioactive molecules,heparin with negative charges and Tyr-Ile-Gly-Ser-Arg(YIGSR)peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes.Due to the electrostatic interaction,the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization.This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction,revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.展开更多
High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural func...High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural functional fillers were prepared by an electrostatic self-assembly approach.The negatively charged carbon nanotubes(nCNTs)prepared by carboxylation on the surface of CNTs were attached to the positively charged boron nitride(pBN)to form the 3D pBN@nCNTs functional fillers.The morphological characterizations of the formed 3D pBN@nCNTs fillers and epoxy composites were established,illustrating that nCNTs were linearly overlapped between the BN sheets,thus forming a 3D heat conduction network in the epoxy matrix.The synergistic effect of pBN with nCNTs on the enhancement of thermal conductivity and dielectric properties of composites was systematically studied.The experimental results demonstrated that the thermal conductivity of pBN@nCNTs/EP composites could reach 1.986 W m1K1 with the loading of 50 wt%fillers at 10:1 mass ratio of pBN:nCNTs,which is 464%and 124%higher than that of pure EP and BN/EP,respectively.Simultaneously,the dielectric permittivity was successfully increased to 15.14.Moreover,the thermal stability of the composites was synchronously enhanced.This study provides a facile path to fabricate thermosetting polymer composites with high thermal conductivity and dielectric properties.展开更多
The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional dr...The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Re...The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.展开更多
To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results dur...To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t...We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).展开更多
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut...Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.展开更多
The regulation of gas sorption via simple pore modification is crucial to molecular recognition and chemical separation.Herein,a rational pore surface electrostatic modulation in synthetic one dimensioned(1-D)channel ...The regulation of gas sorption via simple pore modification is crucial to molecular recognition and chemical separation.Herein,a rational pore surface electrostatic modulation in synthetic one dimensioned(1-D)channel is demonstrated to boost ethane/ethylene(C_(2)H_(6)/C_(2)H_(4))selectivity for one-step extraction of C_(2)H_(4) from C_(2)H_(6)/C_(2)H_(4) mixtures.Through the precise modulation of the surface charge arrangement with negatively charged moieties in the 1-D channel of a metal—organic framework(MOF),enhanced C_(2)H_(6)—host framework and decreased C_(2)H_(4)—host framework electrostatic interactions were obtained,which resulted in an obvious improvement in adsorption selectivity.Furthermore,the breakthrough separation performance rendered the obtained MOF an efficient adsorbent for C_(2)H_(4) purification from C_(2)H_(6)/C_(2)H_(4) mixture.The combined detail theoretical studies prove that the gas sorption selectivity is remarkably sensitive to framework electrostatic change even in the case of pore surface modification at the atomic level.These results are of fundamental importance to the design of porous materials for challenging separation tasks.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
基金Funded by the Natural Science Foundation of Hebei Province, China (No. E2008000537)the Foundation for Development of Science and Technology of Hebei Province, China (No. 07215156)the Open Research Foundation of Key Laboratory of Advanced Civil Engineering Materials (Tongji University),Ministry of Education, China (No. 2010412)
文摘Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.
文摘Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (ESA) method. The whole self-assemble process, the function of surfactant and the effect of TiO_2 slurry′s concentration to the self-assemble were discussed. The isoelectric point of TiO_2 slurry measured by experiment is 6.8. The results show that whatever the concentration of the TiO_2 dispersion, a flat and compact adsorbed monolayer on the optic fiber can be built in a stable dispersion at lower pH. There is a adsorbed equilibrium on the substrate (fiber)/solution interface when enough time of incubation is given. A rough and loosen adsorbed layer is formed on the fiber surface by immersed the substrate in a high pH dispersion (pH>10) because the presence of hydroxyl on particle surface. Film thickness can be controlled by controlling the number of layers in the film.
基金This research was financially supported by China Scholar-ship Council and the Natural Science Foundation of Hubei Province (Project 2000J002)
文摘Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.
基金supported by the National Natural Science Foundation of China(No.51972198)Shandong Provincial Science and Technology Key Project(No.2018GGX104002)+7 种基金Taishan Scholars Program of Shandong Province(No.tsqn201812002)Independent Innovation Foundation of Shandong Universitythe State Key Program of National Natural Science of China(Nos.61633015,51532005)the Young Scholars Program of Shandong University(No.2016WLJH03),the Project of the Taishan Scholar(No.ts201511004)Shandong Provincial Natural Science Foundation(No.ZR2017MB001)Discipline Construction of High-Level Talents of Shandong University(No.31370089963078)1000 Talent Plan program(No.31370086963030)the National Natural Science Foundation of China(No.21371108)。
文摘Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy synthesis,nontoxicity,abundant natural source and smaller volume expansion than Si.However,low intrinsic electrical conductivity,low initial Coulombic efficiency(ICE)and inevitable volume expansion(~200%)impede its practical application.Here we fabricate SiO/wrinkled MXene composite(SiO-WM)by an electrostatic self-assembly method.Importantly,this method is simple,scalable and taking into account all the issues of SiO.As a result,the SiO-WM exhibits imp roved rate capability,cycling performance and ICE than bare SiO.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS16)
文摘Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanospheres are constructed by two-step hydrothermal method.In order to improve the chemical activity of ZnCo_(2)S_(4),ZnCo_(2)S_(4)is activated using cetyltrimethylammonium bromide(CTAB).Then,MXene nanosheets are fixed on the surface of ZnCo_(2)S_(4)by electrostatic selfassembly method to improve the specific surface area of ZnCo_(2)S_(4)and MXene-wrapped ZnCo_(2)S_(4)composite is prepared in this work.Owing to the synergy effect between MXene nanosheets and ZnCo_(2)S_(4)core-shell nanospheres,the as-prepared composite displays fast ion transfer rate and charge/discharge process.The capacity of the MXenewrapped ZnCo_(2)S_(4)composite can reach 1072 F·g^(-1),which is far larger than that of ZnCo_(2)S_(4)(407 F·g^(-1))at 1 A·g^(-1).An ASC device is assembled,which delivers 1.7 V potential window and superior cyclic stability(95.41%capacitance retention).Furthermore,energy density of this device is up to 30.46 Wh·kg^(-1)at a power density of850 W·kg^(-1).The above results demonstrate that MXenewrapped ZnCo_(2)S_(4)composite has great application prospects in electrochemical energy storage field.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金The authors gratefully acknowledge the support for this work from the National Key research and Development Program(Grant No.2018YFA0703100)the National Natural Science Foundation of China(Grant Nos.82072082,31900959)+2 种基金the Youth Innovation Promotion Association of CAS(Grant No.2019350)the Guangdong Natural Science Foundation(Grant No.2019A1515011277)the Shenzhen Fundamental Research Foundation(Grant No.JCYJ20180507182237428).
文摘Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios,it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization.Herein,on basis of 3D-printed polyelectrolyte-based vascular grafts,a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described.A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles,in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used.Further,dual bioactive molecules,heparin with negative charges and Tyr-Ile-Gly-Ser-Arg(YIGSR)peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes.Due to the electrostatic interaction,the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization.This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction,revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.
基金National Key Research and Development Program of China(2017YFB0903804)Science and Technology Program of the State Grid Corporation of China(No.5455DW170026).
文摘High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural functional fillers were prepared by an electrostatic self-assembly approach.The negatively charged carbon nanotubes(nCNTs)prepared by carboxylation on the surface of CNTs were attached to the positively charged boron nitride(pBN)to form the 3D pBN@nCNTs functional fillers.The morphological characterizations of the formed 3D pBN@nCNTs fillers and epoxy composites were established,illustrating that nCNTs were linearly overlapped between the BN sheets,thus forming a 3D heat conduction network in the epoxy matrix.The synergistic effect of pBN with nCNTs on the enhancement of thermal conductivity and dielectric properties of composites was systematically studied.The experimental results demonstrated that the thermal conductivity of pBN@nCNTs/EP composites could reach 1.986 W m1K1 with the loading of 50 wt%fillers at 10:1 mass ratio of pBN:nCNTs,which is 464%and 124%higher than that of pure EP and BN/EP,respectively.Simultaneously,the dielectric permittivity was successfully increased to 15.14.Moreover,the thermal stability of the composites was synchronously enhanced.This study provides a facile path to fabricate thermosetting polymer composites with high thermal conductivity and dielectric properties.
基金supported by the USTC Research Funds of the Double First-Class Initiative(Nos.YD2090002013,YD234000009)the National Natural Science Foundation of China(Nos.61927814,62325507,52122511,U20A20290,62005262)。
文摘The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03060000)National Natural Science Foundation of China(Nos.12005063,12375215 and 12175034)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008).
文摘The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.
基金National Natural Science Foundation of China(No.2275150)。
文摘To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
文摘We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
基金The work was supported by the National Natural Science Foundation of China(52372174)Carbon Neutrality Research Institute Fund(CNIF20230204)Special Project of Strategic Cooperation between China National Petroleum Corporation and China University of Petroleum(Beijing)(ZLZX-2020-04).
文摘Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.
基金supported by the National Key Research and Development Program of China(No.2022YFE0110500)the National Natural Science Foundation of China(No.22376161)+3 种基金the research fund of State Key Laboratory of Mesoscience and Engineering(Nos.MESO-23-A07,MESO-23-T02,and MESO-23-T05)the Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes(No.2024-KFKT-A09)the Science and Technology Plan Project of Qinghai Province Incentive Fund 2022–2024)the Fundamental Research Funds for the Central Universities of China.
文摘The regulation of gas sorption via simple pore modification is crucial to molecular recognition and chemical separation.Herein,a rational pore surface electrostatic modulation in synthetic one dimensioned(1-D)channel is demonstrated to boost ethane/ethylene(C_(2)H_(6)/C_(2)H_(4))selectivity for one-step extraction of C_(2)H_(4) from C_(2)H_(6)/C_(2)H_(4) mixtures.Through the precise modulation of the surface charge arrangement with negatively charged moieties in the 1-D channel of a metal—organic framework(MOF),enhanced C_(2)H_(6)—host framework and decreased C_(2)H_(4)—host framework electrostatic interactions were obtained,which resulted in an obvious improvement in adsorption selectivity.Furthermore,the breakthrough separation performance rendered the obtained MOF an efficient adsorbent for C_(2)H_(4) purification from C_(2)H_(6)/C_(2)H_(4) mixture.The combined detail theoretical studies prove that the gas sorption selectivity is remarkably sensitive to framework electrostatic change even in the case of pore surface modification at the atomic level.These results are of fundamental importance to the design of porous materials for challenging separation tasks.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.