期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Calculation of Plasma Radiation in Electrothermal-Chemical Launcher 被引量:5
1
作者 金涌 栗保明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第1期50-53,共4页
A numerical model of radiation has been adopted for electrothermM-chemical (ETC) launcher, in which Monte Carlo method and statistical physics are employed to simulate the process of a capillary plasma source in an ... A numerical model of radiation has been adopted for electrothermM-chemical (ETC) launcher, in which Monte Carlo method and statistical physics are employed to simulate the process of a capillary plasma source in an ETC launcher. The effect on propellant grains with different average absorption coefficients is discussed. The plasma-propellant interaction is also discussed when combined with a thermal model. Results show that the strong instantaneous radiation is responsible for the transmission of energy to the propellant grains leading to ignition. The efficiency of energy absorption in the propellant bed always maintains a high level. Radiant energy caused by plasma is concentrated around the plaslna injector. And the "hot zone" efficiency is mainly affected by the properties of propellant grains within a small field around the plasma injector. 展开更多
关键词 electrothermal-chemical launch Monte Carlo method plasma radiation
下载PDF
Numerical simulation on the pressure wave in a 30 mm electrothermal-chemical gun with the discharge rod plasma generator 被引量:1
2
作者 Yan-jie Ni Yong Jin +1 位作者 Gang Wan Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期674-679,共6页
An axisymmetric two-dimensional(2D)internal ballistic model including the transient burning rate law is used to simulate the 30mm electrothermal-chemical(ETC)launch with the discharge rod plasma generator(DRPG).The re... An axisymmetric two-dimensional(2D)internal ballistic model including the transient burning rate law is used to simulate the 30mm electrothermal-chemical(ETC)launch with the discharge rod plasma generator(DRPG).The relationship between the pressure wave and the initial parameters,such as input electric power,discharging timing sequence,loading density and propellant web thickness,is researched through the change of initial parameters in the model.In the condition of synchronous discharging,the maximum of the pressure wave can be controlled while the ratio of the input electric energy to the propellant chemical energy(electric energy ratio)is less than 0.11.If the electric energy ratio is larger than 0.11,the maximum of the pressure wave increases rapidly with the electric energy ratio.With the increasing of the electric energy ratio,the change of the first negative amplitude value can be ignored.In the condition of timing sequence discharging,the allowed input electric energy ratio to control the pressure wave is proportional to the current pulse duration.At the high electric energy ratio,the maximum of the pressure wave is inverse proportional to the current pulse duration.The pressure wave increases with the increasing of the loading density.But the allowed electric energy ratio to control the pressure wave and the variation trend of the first negative amplitude wave value doesn't change.During the discharging of the DRPG,the influence of changing propellant web thickness in ETC launch can be ignored. 展开更多
关键词 electrothermal-chemical LAUNCH Pressure wave Plasma Solid PROPELLANT Electric energy RATIO
下载PDF
Parametric Optimization of Electrothermal-chemical (ETC) Launchers
3
作者 陈林 徐敏 +1 位作者 宋盛义 仇旭 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第6期1517-1522,共6页
The research on a 30 mm electrothermal-chemical (ETC) gun including theoretical simulation and experimental results is presented in this paper. The predictions of the theoretical model which is composed of three parts... The research on a 30 mm electrothermal-chemical (ETC) gun including theoretical simulation and experimental results is presented in this paper. The predictions of the theoretical model which is composed of three parts (i.e., pulse forming network, plasma generator and interior ballistics) are in good agreement with the experiments. In addition, we have performed some liquid propellant and solid propellant experiments, respectively. Among the solid propellant experiments, we have investigated the ignition modes of propellant and high velocity launchers. As a result, the 25 : 75 mixture of octane and hydrogen peroxide has a better effect than other liquid propellants. When the propellants are ignited nearby the bottom of projectile in chamber by using an ullage tube connected with the plasma generator, the kinetic energy of projectile will increase, while the chamber pressure will decrease. With a total input electrical energy of 180 kJ, the exit velocity of projectile is up to 2.1 km/s or so. 展开更多
关键词 electrothermal-chemical (ETC) launcher plasma cartridge muzzle velocity PACS: 52.75 82.40.B
下载PDF
Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chem ical launch with discharge rod plasma generator 被引量:6
4
作者 Yan-jie Ni Yong Jin +3 位作者 Niankai Cheng Chun-xia Yang Hai-yuan Li Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第4期249-256,共8页
Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d... Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments. 展开更多
关键词 electrothermal-chemical LAUNCH Interior BALLISTICS SIMULATION Two-phase flow TWO-DIMENSIONAL model
下载PDF
Design and manufacture of a 100 kA coaxial pulsed power cable for plasma generator and PPS in ETC guns 被引量:1
5
作者 Yong Jin Zhen-xiao Li +4 位作者 Yan-jie Ni Xiao-ya Gao Gang Wan Chun-xia Yang Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期698-702,共5页
Based on our previous pulsed current and internal overvoltage test data and the experience of common commercial high power cables,a 100 kA coaxial pulsed power cable is designed and manufactured to adapt the coaxial e... Based on our previous pulsed current and internal overvoltage test data and the experience of common commercial high power cables,a 100 kA coaxial pulsed power cable is designed and manufactured to adapt the coaxial electric energy breech transmission between the plasma generator and the pulsed power supply(PPS) in electrothermal-chemical(ETC) guns.The index parameters are analyzed and determined.Semi-conductor layers and a shield stiffener are introduced to prevent the deformation and burst of the pulsed power cable structurally.The semi-conductor layer can eliminate the air gap and balance the electric field in the cable.The shield stiffener can multiply the mechanical strength to restrain the strong electrodynamic force produced by the core dislocation of the outer conductor.The multi-coupling of electromagnetic field,stress field and thermal field analysis are established to assist in aided design of electrical strength,mechanical strength and temperature rise characteristics.Both a DC voltage withstand test and pulsed discharge tests are introduced to verify and inspect the performance and dynamic response of the pulsed power cable.The 25 kV/5 min DC voltage withstand test result shows that the sample leakage current is nearly 3 μA and no abnormal phenomena of the pulsed power cable sample occurred.The pulsed discharge tests show that the sample can sustain the 100 kA peak current.Furthermore,this 100 kA coaxial pulsed power cable can satisfy the ETC test requirements. 展开更多
关键词 PULSED POWER cable PULSED POWER supply electrothermal-chemical LAUNCH COAXIAL structure
下载PDF
Study of the expansion characteristics of a pulsed plasma jet in air
6
作者 赵雪维 余永刚 +1 位作者 莽珊珊 薛晓春 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第4期48-61,共14页
In the background of electrothermal-chemical (ETC) emission,an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air.The evolutionary process of the plasma jet is exp... In the background of electrothermal-chemical (ETC) emission,an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air.The evolutionary process of the plasma jet is experimentally investigated using a piezoelectric pressure sensor and a digital high-speed video system.The variation relation in the extended volume,axial displacement and radial displacement of the pulsed plasma jet in atmosphere with time under different discharge voltages and jet breaking pressures is obtained.Based on experiments,a two-dimensional axisymmetric unsteady model is established to analyze the characteristics of the two-phase interface and the variation of flow-field parameters resulting from a pulsed plasma jet into air at a pressure of 1.5-3.5 MPa under three nozzle diameters (3 mm,4 mm and 5 ram,respectively).The images of the plasma jet reveal a changing shape process,from a quasiellipsoid to a conical head and an elongated cylindrical tail.The axial displacement of the jet is always larger than that along the radial direction.The extended volume reveals a single peak distribution with time.Compared to the experiment,the numerical simulation agrees well with the experimental data.The parameters of the jet field mutate at the nozzle exit with a decrease in the parameter pulse near the nozzle,and become more and more gradual and close to environmental parameters.Increasing the injection pressure and nozzle diameter can increase the parameters of the flow field such as the expansion volume of the pulsed plasma jet,the size of the Mach disk and the pressure.In addition,the turbulent mixing in the expansion process is also enhanced. 展开更多
关键词 electrothermal-chemical propulsion pulsed plasma jet injection pressure nozzlediameter EXPERIMENT numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部