The detection technology of concealed bulk explosives is related to social security and national defense construction and has important research significance. In this paper, an element analysis method of concealed exp...The detection technology of concealed bulk explosives is related to social security and national defense construction and has important research significance. In this paper, an element analysis method of concealed explosives based on thermal neutron analysis is proposed.This method could provide better reconstruction precision for hydrogen, carbon, and nitrogen ratios, making it possible to discriminate explosives from other compounds with the same elements but different proportions, as well as to identify the types of concealed bulk explosives. In this paper, the basic principles and mathematical model of this method are first introduced, and the calculation formula of the element number ratio(the ratio between the nucleus numbers of two different elements) of the concealed explosive is deduced. Second, a numerical simulation platform of this method was established based on the Monte Carlo JMCT code. By calibrating the absorption efficiencies of the explosive device to c rays, the element number ratios of a concealed explosive model under the irradiation of thermal neutrons were reconstructed from the neutron capture prompt c-ray spectrum. The reconstruction values were in good agreement with the actual values,which shows that this method has a high reconstruction precision of the element number ratio for concealed explosives. Lastly, it was demonstrated using the simulation study that this method can discriminate explosives,drugs, and common materials, with the capability of determining the existence of concealed bulk explosives and identifying explosive types.展开更多
Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shea...Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson's ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson's ratio depend uniquely on the soil's coordination number.展开更多
文摘The detection technology of concealed bulk explosives is related to social security and national defense construction and has important research significance. In this paper, an element analysis method of concealed explosives based on thermal neutron analysis is proposed.This method could provide better reconstruction precision for hydrogen, carbon, and nitrogen ratios, making it possible to discriminate explosives from other compounds with the same elements but different proportions, as well as to identify the types of concealed bulk explosives. In this paper, the basic principles and mathematical model of this method are first introduced, and the calculation formula of the element number ratio(the ratio between the nucleus numbers of two different elements) of the concealed explosive is deduced. Second, a numerical simulation platform of this method was established based on the Monte Carlo JMCT code. By calibrating the absorption efficiencies of the explosive device to c rays, the element number ratios of a concealed explosive model under the irradiation of thermal neutrons were reconstructed from the neutron capture prompt c-ray spectrum. The reconstruction values were in good agreement with the actual values,which shows that this method has a high reconstruction precision of the element number ratio for concealed explosives. Lastly, it was demonstrated using the simulation study that this method can discriminate explosives,drugs, and common materials, with the capability of determining the existence of concealed bulk explosives and identifying explosive types.
基金The work presented in this paper was supported by the National Natural Science Foundation of China (Grant Nos. 51308408, 41272291,51238009) and the Fundamental Research Funds for the Central Universities, and the Open Foundation of State Key Labo- ratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2014492311 ).
文摘Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson's ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson's ratio depend uniquely on the soil's coordination number.