By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension s...In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied.展开更多
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f...In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.展开更多
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c...In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.展开更多
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar...In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.展开更多
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin...We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.展开更多
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presente...Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.展开更多
An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different fr...An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.展开更多
In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used...In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.展开更多
The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the es...The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.展开更多
In this paper,we considered the improved element-free Galerkin(IEFG)method for solving 2D anisotropic steadystate heat conduction problems.The improved moving least-squares(IMLS)approximation is used to establish the ...In this paper,we considered the improved element-free Galerkin(IEFG)method for solving 2D anisotropic steadystate heat conduction problems.The improved moving least-squares(IMLS)approximation is used to establish the trial function,and the penalty method is applied to enforce the boundary conditions,thus the final discretized equations of the IEFG method for anisotropic steady-state heat conduction problems can be obtained by combining with the corresponding Galerkin weak form.The influences of node distribution,weight functions,scale parameters and penalty factors on the computational accuracy of the IEFG method are analyzed respectively,and these numerical solutions show that less computational resources are spent when using the IEFG method.展开更多
The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Calerkin (EFG) method which is based on the moving least-squares approximation. A variational meth...The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Calerkin (EFG) method which is based on the moving least-squares approximation. A variational method is used to obtain discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for KdV equations needs only scattered nodes instead of meshing the domain of the problem. It does not require any element connectivity and does not suffer much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for the KdV equation is investigated by two numerical examples in this paper.展开更多
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, w...The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study.展开更多
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble...Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.展开更多
The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function....The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology opti- mization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown.展开更多
The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.Th...The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.展开更多
A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are ...A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are proved based on a condition that the nonlinear term is an increasing Lipschitz continuous function of the unknown function.A simple iterative scheme is used to deal with the nonlinear integral term.We proved the existence,uniqueness and convergence of the weak solution sequence for continuous level of the simple iterative scheme.A commonly used assumption for approximate space,sometimes called inverse assumption,is proved.Optimal order error estimates in L 2 and H1 norms are proved for the linear and semilinear elliptic problems.In the actual numerical calculation,the characteristic distance h does not appear explicitly in the parameterβintroduced by the Nitsche method.The theoretical results are confirmed numerically。展开更多
This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form s...This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form shape function, and using the Galerkin weak form of 2D elastic large deformation problems to obtain the discrete equations, we obtain the formulae of the IEFG method for 2D elastic large deformation problems. As the displacement boundary conditions can be applied directly, the IEFG method can acquire higher computational efficiency and accuracy than the traditional element-free Galerkin(EFG)method, which is based on the moving least-squares approximation and can not apply the displacement boundary conditions directly. To analyze the influences of node distribution, scale parameter of influence domain and the loading step on the numerical solutions of the IEFG method, three numerical examples are proposed. The IEFG method has almost the same high accuracy as the EFG method, and for some 2D elastic large deformation problems the IEFG method even has higher computational accuracy.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
基金supported by the National Natural Science Foundation of China(Grant Nos.52004169 and 11571223).
文摘In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No. SHUCX112359)
文摘In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11171208 and U1433104)
文摘In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.
基金supported by the National Natural Science Foundation of China (Grant No.11026223)the Shanghai Leading Academic Discipline Project,China (Grant No.S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No.SHUCX112359)
文摘In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471063)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2015jcyj BX0083)the Educational Commission Foundation of Chongqing City,China(Grant No.KJ1600330)
文摘We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.
基金Project(41074085)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0551)supported by the Funds for New Century Excellent Talents in University,ChinaProject supported by Shenghua Yuying Program of Central South University,China
文摘An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.
基金the National Basic Research Program of China(Grant No.2012CB025903)
文摘In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6110007)
文摘The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.
基金supported by Natural Science Foundation of Shanxi Province(Grant No.20210302124388).
文摘In this paper,we considered the improved element-free Galerkin(IEFG)method for solving 2D anisotropic steadystate heat conduction problems.The improved moving least-squares(IMLS)approximation is used to establish the trial function,and the penalty method is applied to enforce the boundary conditions,thus the final discretized equations of the IEFG method for anisotropic steady-state heat conduction problems can be obtained by combining with the corresponding Galerkin weak form.The influences of node distribution,weight functions,scale parameters and penalty factors on the computational accuracy of the IEFG method are analyzed respectively,and these numerical solutions show that less computational resources are spent when using the IEFG method.
基金Project supported by the Natural Science Foundation of Ningbo City (Grant No.2009A610014)the Natural Science Foundation of Zhejiang Province (Grant No.Y6090131)the Research Foundation of Ningbo University of Technology (Grant No.2008004)
文摘The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Calerkin (EFG) method which is based on the moving least-squares approximation. A variational method is used to obtain discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for KdV equations needs only scattered nodes instead of meshing the domain of the problem. It does not require any element connectivity and does not suffer much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for the KdV equation is investigated by two numerical examples in this paper.
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
基金supported by the National Natural Science Foundation of China (11171208)Shanghai Leading Academic Discipline Project (S30106)
文摘The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11571223 and U1433104)
文摘The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology opti- mization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown.
基金Key project(02103) supported by National Education Department of ChinaKey project(02A008) supported by the Education Department of Hunan Province,China+3 种基金Project(2005090) supported by Central South University of Forestry and TechnologyProject(03JJY3007) supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Rewarding Project for Excellent PhD Thesis of Hunan Province,ChinaProject(07031B) supported by Scientific Research Fund of Central South University of Forestry and Technology
文摘The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.
基金supported by the Innovation Research Group Project in Universities of Chongqing of China(No.CXQT19018)the National Natural Science Foundation of China(Grant No.11971085)+1 种基金he Natural Science Foundation of Chongqing(Grant Nos.cstc2021jcyj-jqX0011 and cstc2020jcyj-msxm0777)an open project of Key Laboratory for Optimization and Control Ministry of Education,Chongqing Normal University(Grant No.CSSXKFKTM202006)。
文摘A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are proved based on a condition that the nonlinear term is an increasing Lipschitz continuous function of the unknown function.A simple iterative scheme is used to deal with the nonlinear integral term.We proved the existence,uniqueness and convergence of the weak solution sequence for continuous level of the simple iterative scheme.A commonly used assumption for approximate space,sometimes called inverse assumption,is proved.Optimal order error estimates in L 2 and H1 norms are proved for the linear and semilinear elliptic problems.In the actual numerical calculation,the characteristic distance h does not appear explicitly in the parameterβintroduced by the Nitsche method.The theoretical results are confirmed numerically。
基金supported by the National Natural Science Foundation of China (Grant No. 11571223)。
文摘This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form shape function, and using the Galerkin weak form of 2D elastic large deformation problems to obtain the discrete equations, we obtain the formulae of the IEFG method for 2D elastic large deformation problems. As the displacement boundary conditions can be applied directly, the IEFG method can acquire higher computational efficiency and accuracy than the traditional element-free Galerkin(EFG)method, which is based on the moving least-squares approximation and can not apply the displacement boundary conditions directly. To analyze the influences of node distribution, scale parameter of influence domain and the loading step on the numerical solutions of the IEFG method, three numerical examples are proposed. The IEFG method has almost the same high accuracy as the EFG method, and for some 2D elastic large deformation problems the IEFG method even has higher computational accuracy.