期刊文献+
共找到753,604篇文章
< 1 2 250 >
每页显示 20 50 100
An improved boundary element-free method (IBEFM) for two-dimensional potential problems 被引量:8
1
作者 任红萍 程玉民 张武 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4065-4073,共9页
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (B... The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method. 展开更多
关键词 moving least-squares approximation interpolating moving least-squares method mesh- less method improved boundary element-free method potential problem
下载PDF
Application of the extended traction boundary element-free method to the fracture of two-dimensional infinite magnetoelectroelastic solid
2
作者 FENG WenJie LI YanSong +1 位作者 HAN Xu XU ZengHe 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第6期1141-1153,共13页
A novel extended traction boundary element-free method is proposed to analyze the crack problems of two-dimensional infinite magnetoelectroelastic solid.An extended traction boundary integral equation only involving C... A novel extended traction boundary element-free method is proposed to analyze the crack problems of two-dimensional infinite magnetoelectroelastic solid.An extended traction boundary integral equation only involving Cauchy singularity is firstly derived.Then,the extended dislocation densities on the crack surface are expressed as the combination of a characteristic term and unknown weight functions,and the radial point interpolation method is adopted to approximate the unknown weight functions.The numerical scheme of the extended traction boundary element-free method is further established,and an effective numerical procedure is used to evaluate the Cauchy singular integrals.Finally,the stress intensity factor,electric displacement intensity factor and magnetic induction intensity factor are computed for some selected crack problems that contain straight,curved and branched cracks,and good numerical results are obtained.At the same time,the fracture properties of these crack problems are discussed. 展开更多
关键词 boundary element-free method boundary integral equation radial point interpolation method crack problem magnetoelectroelastic materials
原文传递
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 被引量:15
3
作者 王聚丰 孙凤欣 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期53-59,共7页
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II... In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 展开更多
关键词 meshless method improved interpolating moving least-square method improved inter-polating element-free Galerkin method potential problem
下载PDF
Boundary element-free method for elastodynamics 被引量:13
4
作者 CHENG Yumin1 & PENG Miaojuan2 1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China 2. Department of Civil Engineering, Shanghai University, Shanghai 200072, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2005年第6期641-657,共17页
The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an ... The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given. 展开更多
关键词 MOVING least-square approximation improved MOVING least-square approximation elastodynamics BOUNDARY integral equation MESHLESS method BOUNDARY element-free method Fourier eigen transform.
原文传递
An interpolating boundary element-free method (IBEFM) for elasticity problems 被引量:5
5
作者 REN HongPing 1 , CHENG YuMin 2 & ZHANG Wu 1 1 School of Computer Engineering and Science, Shanghai University, Shanghai 200072, China 2 Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第4期758-766,共9页
The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), com... The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), combining the boundary integral equation method with the IMLS method improved in this paper, the interpolating boundary element-free method (IBEFM) for two-dimensional elasticity problems is presented, and the corresponding formulae of the IBEFM for two-dimensional elasticity problems are obtained. In the IMLS method in this paper, the shape function satisfies the property of Kronecker δ function, and then in the IBEFM the boundary conditions can be applied directly and easily. The IBEFM is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution to the nodal variables. Thus it gives a greater computational precision. Numerical examples are presented to demonstrate the method. 展开更多
关键词 MOVING LEAST-SQUARES (MLS) approximation interpolating MOVING LEAST-SQUARES (IMLS) method BOUNDARY integral equation MESHLESS method BOUNDARY element-free method (BEFM) interpolating BOUNDARY element-free method (IBEFM) elasticity problem
原文传递
The dimension split element-free Galerkin method for three-dimensional potential problems 被引量:4
6
作者 Z.J.Meng H.Cheng +1 位作者 L.D.Ma Y.M.Cheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期462-474,共13页
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d... This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method. 展开更多
关键词 Dimension split method Improved moving least-squares (IMLS) approximation Improved element-free Galerkin (IEFG) method Finite difference method (FDM) Dimension split element-free Galerkin (DSEFG) method Potential problem
下载PDF
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
7
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free Galerkin method potential problem
下载PDF
Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method 被引量:3
8
作者 程玉民 刘超 +1 位作者 白福浓 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期16-25,共10页
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c... In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods. 展开更多
关键词 meshless method complex variable moving least-squares approximation improved complex vari- able element-free Galerkin method elastoplasticity
下载PDF
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 被引量:3
9
作者 Bai Fu-Nong Li Dong-Ming +1 位作者 Wang Jian-Fei Cheng Yu-Min 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期56-65,共10页
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar... In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method. 展开更多
关键词 meshless method improved complex variable moving least-squares approximation improved complex variable element-free Galerkin method ELASTICITY
下载PDF
Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems 被引量:2
10
作者 唐耀宗 李小林 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期215-225,共11页
We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin... We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis. 展开更多
关键词 meshless method moving least squares approximation element-free Galerkin method error esti-mate
下载PDF
The improved element-free Galerkin method forthree-dimensional wave equation 被引量:16
11
作者 Zan Zhang Dong-Ming Li +1 位作者 Yu-Min Cheng Kim Moew Liew 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期808-818,共11页
The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, w... The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study. 展开更多
关键词 Weighted orthogonal function Improved mov-ing least squares (IMLS) approximation. Improved element-free Galerkin (IEFG) method Penalty method Temporaldiscretization Wave equation
下载PDF
Element-free Galerkin (EFG) method for a kind of two-dimensional linear hyperbolic equation 被引量:2
12
作者 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4059-4064,共6页
The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the tes... The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the test and trial functions. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for hyperbolic problems needs only the scattered nodes instead of meshing the domain of the problem. It neither requires any element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for two-dimensional hyperbolic problems is investigated by two numerical examples in this paper. 展开更多
关键词 element-free Galerkin (EFG) method meshless method hyperbolic problem
下载PDF
Topology optimization using the improved element-free Galerkin method for elasticity 被引量:3
13
作者 吴意 马永其 +1 位作者 冯伟 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期32-39,共8页
The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function.... The improved element-free Galerkin (IEFG) method of elasticity is used to solve the topology optimization problems. In this method, the improved moving least-squares approximation is used to form the shape function. In a topology opti- mization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin (EFG) method. The central processing unit (CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown. 展开更多
关键词 meshless method improved moving least-squares approximation improved element-free Galerkinmethod topology optimization
下载PDF
An improved interpolating element-free Galerkin method for elasticity 被引量:4
14
作者 孙凤欣 王聚丰 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期43-50,共8页
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble... Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method. 展开更多
关键词 meshless method improved interpolating moving least-squares (ⅡMLS) method improved interpolating element-free Galerkin (ⅡEFG) method elasticity
下载PDF
A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems 被引量:1
15
作者 Jufeng Wang Yong Wu +1 位作者 Ying Xu Fengxin Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期341-356,共16页
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose... By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability. 展开更多
关键词 Dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method interpolating variational multiscale element-free Galerkin(VMIEFG)method dimension splitting method singularly perturbed convection-diffusion problems
下载PDF
An element-free Galerkin method for ground penetrating radar numerical simulation 被引量:2
16
作者 冯德山 郭荣文 王洪华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期261-269,共9页
An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different fr... An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision. 展开更多
关键词 element-free Galerkin method moving least-squares method ground penetrating radar forward simulation
下载PDF
Element-free Galerkin method for free vibration of rectangular plates with interior elastic point supports and elastically restrained edges 被引量:1
17
作者 王砚 王忠民 阮苗 《Journal of Shanghai University(English Edition)》 CAS 2010年第3期187-195,共9页
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t... The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed. 展开更多
关键词 element free method rectangular thin plates interior elastic point supports elastically restrained edges free vibration
下载PDF
Solving unsteady Schr?dinger equation using the improved element-free Galerkin method 被引量:3
18
作者 程荣军 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期35-43,共9页
By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrodinger equation. In the IEFG method, the two-dimensional (2D... By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrodinger equation. In the IEFG method, the two-dimensional (2D) trial function is approximated by the IMLS approximation, the variation method is used to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. Because the number of coefficients in the IMLS approximation is less than in the moving least-square (MLS) approximation, fewer nodes are needed in the entire domain when the IMLS approximation is used than when the MLS approximation is adopted. Then the IEFG method has high computational efficiency and accuracy. Several numerical examples are given to verify the accuracy and efficiency of the IEFG method in this paper. 展开更多
关键词 meshless method improved moving least-square (IMLS) approximation improved element-freeGalerkin (IEFG) method Schr6dinger equation
下载PDF
Complex variable element-free Galerkin method for viscoelasticity problems 被引量:2
19
作者 程玉民 李荣鑫 彭妙娟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期60-71,共12页
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presente... Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method. 展开更多
关键词 meshless method complex variable moving least-square approximation complex variableelement-free Galerkin method VISCOELASTICITY
下载PDF
A 3D shell-like approach using element-free Galerkin method for analysis of thin and thick plate structures 被引量:6
20
作者 Yu Yin Lin-Quan Yao Yang Cao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第1期85-98,共14页
A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analo... A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples. 展开更多
关键词 Meshless methods 3D shell-like Moving least squares approximation SELF-LOCKING Thin plate
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部