Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pret...Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.展开更多
NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the ...NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite,and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.Ni_(3)ZnC_(0.7),Ni_(3)Fe,and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity.Thus,the composite exhibited the best performance among the composites,with the minimum reflection loss(RL_(min))of-33.1 dB at 18 GHz and thickness of 1.4 mm.The bandwidth for RL of≤-10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%.The op-timized impedance matching,enhanced interfacial and dipole polarization,remarkable conduction loss,and multiple reflections and scat-tering of the incident microwaves improved the microwave absorption performance.The effects of Co,Ni,and Fe on the phase and mor-phology provided an alternative way for developing highly efficient and broadband microwave absorbers.展开更多
Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already w...Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.展开更多
Carbonaceous components contribute significant fraction of fine particulate matter (PM2.5). Study of organic carbon (OC) and elemental carbon (EC) in PM2.5 may lead to better understanding of secondary organic carbon ...Carbonaceous components contribute significant fraction of fine particulate matter (PM2.5). Study of organic carbon (OC) and elemental carbon (EC) in PM2.5 may lead to better understanding of secondary organic carbon (SOC) formation. This year-long (December 2008 to December 2009) field study was conducted in an animal agriculture intensive area in North Carolina of United States. Samples of PM2.5 were collected from five stations located in an egg production facility and its vicinities. Concentrations of OC/EC and thermograms were obtained using a thermal-optical carbon analyzer. Average levels of OC in the egg production house and at ambient stations were 42.7 μg/m3 and 3.26 - 3.47 μg/m3, respectively. Average levels of EC in the house and at ambient stations were 1.14 μg/m3 and 0.36 - 0.42 μg/m3, respectively. The OC to total carbon (TC) ratios at ambient stations exceeded 0.67, indicating a significant fraction of SOC presented in PM2.5. Principal factor analysis results suggested that possible major source of in-house PM2.5 was from poultry feed and possible major sources of ambient PM2.5 was from contributions of secondary inorganic and organic PM. Using the OC/EC primary ratio analysis method, ambient stations SOC fractions ranged from 68% to 87%. These findings suggested that SOC could appreciably contribute to total PM2.5 mass concentrations in this agriculture intensive area.展开更多
In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial e...In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources(water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation.展开更多
The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission ...The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure.展开更多
The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown th...The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown that the interstitial elements, such as C and N, may be completely stabilized by the addition of Nb and Ti. With the increase of Nb and Ti contents ,the α + γ two phases gradually transfer to a single α-phase under a high temperature condition ,and the content of the carbide M23 C6 gradually decreases. The microstructure has indicated that the combined addition of Nb and Ti can promote the recrystallization of the band structure and form more uniform equiaxed grains. Also, with the increase of Nb and Ti contents,the elongation, the r-value and the corrosion resistance of cold-rolled and annealed sheets are improved prominently. In comparison with the effect of Ti ,the addition of Nb is more beneficial to the increase of r-value and the corrosion resistance.展开更多
A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiti...A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiting ability of the alloy was tested by a corrosion measurement system and a scale inhibition evaluation system, respectively. Scale samples were characterized with SEM and XRD. It is found that the transfer of cations could be promoted by doping with proper rare earth elements, and the corrosion potentials descend by 25~126 mV. The results indicated that the copper-zinc alloy doped with rare earth elements has higher scale inhibiting ability of CaCO3. The growth of calcite was affected by zinc ions dissolved because of primary battery reaction, and the transition of calcium carbonate from aragonite to calcite was hampered resulting in the proportion of aragonite to calcite is changed from 1.7∶1 to 2.7∶1.展开更多
Oil group separation,gas chromatography-mass spectrometry analysis of saturated hydrocarbons,carbon isotope analysis of fractions and tests on trace elements were all carried out to determine the origin of shallow Jur...Oil group separation,gas chromatography-mass spectrometry analysis of saturated hydrocarbons,carbon isotope analysis of fractions and tests on trace elements were all carried out to determine the origin of shallow Jurassic heavy oils in the northwestern margin of the Junggar Basin,northwestern China.Results showed that all the crude oils had been subjected to different degrees of biodegradation,on an order ranging from PM 6 to 9,which yielded many unresolved complex mixtures(UCM)and formed a huge spike in the mass chromatogram(M/Z=85).Two heavy oils from the Karamay area underwent slight biodegradation,characterized by the consistent ratios of biomarker parameters.C_(21)/C_(23)and C_(23)/H of the two samples were 0.81 and 0.85,while G/H,C_(27)/C_(29)and C_(28)/C_(29)were 0.38 and 0.40,0.16 and 0.27,0.87 and 0.86,respectively.The isomerization parameters of terpane and steranes were 0.50-0.53,and 0.48-0.49,respectively.The above geochemical indices indicated that the crude oils in the study area were in the marginally mature stage.The parent materials were a mixture,consisting of bacteria,algae and some higher plants,formed under reducing depositional conditions,which is in agreement with the source rocks of the Fengcheng Formation in the Mahu depression.The carbon isotopic compositions of saturated hydrocarbon,aromatic hydrocarbon,NSO and asphaltene were−31‰−to−30.3‰,−29.5‰to−29.03‰,−29.4‰to−28.78‰and−28.62‰to−28.61‰,respectively.These findings are in agreement with the light carbon isotope of kerogen from the lower Permian Fengcheng Formation.Furthermore,V/Ni and Cr/Mo of all the crude oils were 0.01 to 0.032,0.837 to 10.649,which is in good agreement with the ratios of the corresponding elements of the extracts from the Fengcheng Fm.carbonate source rock.As a result,a two-stage formation model was established:(1)the oil generated from the carbonate source rocks of the Fengcheng Formation migrated to the Carboniferous,Permian and Triassic traps during the Late Triassic,forming the primary oil reservoirs;(2)during the Late Jurassic period,the intense tectonic activity of Yanshan Episode II resulted in the readjustment of early deep primary reservoirs,the escaped oils gradually migrating to the shallow Jurassic reservoir through cross-cutting faults,unconformities and sand body layers.The oils then finally formed secondary heavy oil reservoirs,due to long-term biodegradation in the later stage.Therefore,joint methods of organic,isotopic and element geochemistry should be extensively applied in order to confirm the source of biodegradation oils.展开更多
The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present res...The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present researeh. With the equation developed in this paper, the effects of nitrogen on crystallization temperature of Fe-3.45C-2.15Si0. 16Mn and Fe-3.45C-2. 15Si-0. 80Mn alloys were discussed.展开更多
Compression tests on twenty unidirectional(UD) carbon fibre reinforced plastic(CFRP) specimens are conducted, the statistics on the measured compressive strength is calculated, and the fracture surface is characterize...Compression tests on twenty unidirectional(UD) carbon fibre reinforced plastic(CFRP) specimens are conducted, the statistics on the measured compressive strength is calculated, and the fracture surface is characterized. Two types of different fracture surface are experimentally observed, and they are corresponding to very different values on the compressive strength. A finite element(FE) analysis is conducted to investigate the influence of random fibre packing on the compressive strength. And a riks method(provided in ABAQUS software) is applied in FE model to analyze fibre buckling behaviour in the vicinity of compressive failure. The FE analysis agrees well with the experimental observation on the two types of buckling modes and also the partition of compressive strength. It is clearly shown that the random fibre packing lays a significant influence on the random variability of compressive strength of CFRP.展开更多
In this study,the gamma-ray spectrum of single elemental capture spectrum log was simulated.By numerical simulation we obtain a single-element neutron capture gamma spectrum.The neutron and photon transportable proces...In this study,the gamma-ray spectrum of single elemental capture spectrum log was simulated.By numerical simulation we obtain a single-element neutron capture gamma spectrum.The neutron and photon transportable processes were simulated using the Monte Carlo N-Particle Transport Code System(MCNP),where an Am–Be neutron source generated the neutrons and thermal neutron capture reactions with the stratigraphic elements.The characteristic gamma rays and the standard gamma spectra were recorded,from analyzing of the characteristic spectra analysis we obtain the ten elements in the stratum,such as Si,Ca,Fe,S,Ti,Al,K,Na,Cl,and Ba.Comparing with single elemental capture gamma spectrum of Schlumberger,the simulated characteristic peak and the spectral change results are in good agreement with Schlumberger.The characteristic peak positions observed also consistent with the data obtained from the National Nuclear Data Center of the International Atomic Energy Agency.The neutron gamma spectrum results calculated using this simple method have practical applications.They also serve as an reference for data processing using other types of element logging tools.展开更多
Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micr...Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro-to macro-scales.The nanocomposites were modeled using representative volume elements(RVEs),and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs,which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites.When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites,the mechanical parameters and stress-strain curves of the composites on themacro-scale were obtained by endowing the elements of the lattice models withRVE parameters.Tensile experiments of the CNT-reinforced composites were also carried out.The validity of the finite element simulation method was verified by comparing the results of the simulations and experiments.Finite element models of functionally graded CNT-reinforced composites(FG-CNTRC)with different distributions were established,and the tensile and three-point-bending conditions for various graded material models were simulated by the methods of lattice model and birth-death element to obtain the tensile and bending parameters.In addition,the influence of the distribution and volume ratio of the CNTs on the performance of the graded composite material structures was also analyzed.展开更多
Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantiall...Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantially to EC deposition in Antarctica.Here,we present the seasonal variation of EC determined from aerosol samples acquired at Zhongshan Station(ZSS),East Antarctica.The concentration of EC in the atmosphere varied between 0.02 and 257.81 ng·m^(-3)with a mean value of 44.87±48.92 ng·m^(-3).The concentration of EC aerosols reached its peak in winter(59.04 ng·m^(-3))and was lowest(27.26 ng·m^(-3))in summer.Back trajectory analysis showed that biomass burning in southern South America was the major source of the EC found at ZSS,although some of it was derived from southern Australia,especially during winter.The 2019–2020 Australian bush fires had some influence on EC deposition at ZSS,especially during 2019,but the contribution diminished in 2020,leaving southern South America as the dominant source of EC.展开更多
The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and micro...The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.展开更多
In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular ...In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular elements varied widely among different phytoplankton.We found that temperature is one of the important factors affecting the carbon,nitrogen,and sulfur contents in phytoplankton cells;however,the degree of influence of temperature is different for different kinds of phytoplankton.By measuring the nitrogen content in cells,we found that the C:N ratio indirectly measured in the experiment fluctuated in the range of 3.50-8.97,and the average C:N ratio was 5.52.In this experiment,we accurately measured the cell elemental contents at different temperatures and transformed the cell count results into carbon,nitrogen,and sulfur contents to express the biomass.This method ensures that the contribution of species that are small in number but with a large cell volume in biomass is considered.Moreover,this method comprehensively considers the interspecific differences of species and the uneven distribution of elements in phytoplankton cells,which is of significance in the estimation of marine carbon and nitrogen budget.The distribution of nitrogen content in marine phytoplankton can well indicate the marine eutrophication caused by human activities.Climate change can affect the community structure and element composition of marine phytoplankton,meanwhile marine carbon and nitrogen element can regulate the climate to a certain extent.展开更多
The objective of this study was to evaluate the effects of elemental sulphur (S) and farmyard manure on soil pH, EC and N, S, P concentrations of tomato grown in a calcareous sandy loam soil. For this purpose, a pot...The objective of this study was to evaluate the effects of elemental sulphur (S) and farmyard manure on soil pH, EC and N, S, P concentrations of tomato grown in a calcareous sandy loam soil. For this purpose, a pot experiment was conducted in greenhouse conditions. Sulphur was applied at 0, 50, 100, 150, 200, 400 mg kg~ and farmyard manure at 0, 3 ton da^-1 to the soil. Three weeks after applications, tomato seedlings were planted and 8 weeks later, the plants were harvested to determine N, S, P concentrations and dry matter yield. Soil pH and EC were determined in the soil samples taken at 3 different periods. Effects of sulphur and farmyard manure applications were not significant on N, P concentrations and dry matter yield of tomato plant. S concentration of tomato plant was increased by sulphur alone. Soil pH was decreased and soil EC was increased in both 2^nd and 3^rd soil sampling period by the sulphur applications. As a result of farmyard manure application, soil pH decreased in the 2^nd soil sampling period but increased in the 3^rd soil sampling period. Also, soil EC was significantly increased in 1^st and 3^rd soil sampling period. Farmyard manure had no significant effect on S supply to tomato plant. The N:S ratio of tomato plant was decreased by sulphur alone. However, the sulphur with farmyard manure applications decreased N:S ratio in lesser extend compared to the S applications.展开更多
基金supported the National Natural Science Foundation of China (42022059,41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No.XDB26020000)+1 种基金the Key Research Program of the Institute of Geology and Geophysics (CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team (JCTD-2021-05).
文摘Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.
基金supported by research pro-grams of National Natural Science Foundation of China(Nos.52101274 and 52377026)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011 and ZR2022ME089)+4 种基金Taishan Scholars and Young Experts Pro-gram of Shandong Province,China(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Special Fin-ancial of Shandong Province,China(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams),Youth Top Talent Foundation of Yantai University(No.2219008)Graduate Innovation Foundation of Yantai University(No.GIFYTU2240)College Student Innovation and Entrepreneurship Training Program Project(No.202311066088).
文摘NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite,and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.Ni_(3)ZnC_(0.7),Ni_(3)Fe,and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity.Thus,the composite exhibited the best performance among the composites,with the minimum reflection loss(RL_(min))of-33.1 dB at 18 GHz and thickness of 1.4 mm.The bandwidth for RL of≤-10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%.The op-timized impedance matching,enhanced interfacial and dipole polarization,remarkable conduction loss,and multiple reflections and scat-tering of the incident microwaves improved the microwave absorption performance.The effects of Co,Ni,and Fe on the phase and mor-phology provided an alternative way for developing highly efficient and broadband microwave absorbers.
基金the National Natural Science Foundation of China(Nos.552104156,52074351,and 52004330)the National Natural Science Foundation of Hunan Province,China(No.2022JJ30714)the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3125)。
文摘Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.
文摘Carbonaceous components contribute significant fraction of fine particulate matter (PM2.5). Study of organic carbon (OC) and elemental carbon (EC) in PM2.5 may lead to better understanding of secondary organic carbon (SOC) formation. This year-long (December 2008 to December 2009) field study was conducted in an animal agriculture intensive area in North Carolina of United States. Samples of PM2.5 were collected from five stations located in an egg production facility and its vicinities. Concentrations of OC/EC and thermograms were obtained using a thermal-optical carbon analyzer. Average levels of OC in the egg production house and at ambient stations were 42.7 μg/m3 and 3.26 - 3.47 μg/m3, respectively. Average levels of EC in the house and at ambient stations were 1.14 μg/m3 and 0.36 - 0.42 μg/m3, respectively. The OC to total carbon (TC) ratios at ambient stations exceeded 0.67, indicating a significant fraction of SOC presented in PM2.5. Principal factor analysis results suggested that possible major source of in-house PM2.5 was from poultry feed and possible major sources of ambient PM2.5 was from contributions of secondary inorganic and organic PM. Using the OC/EC primary ratio analysis method, ambient stations SOC fractions ranged from 68% to 87%. These findings suggested that SOC could appreciably contribute to total PM2.5 mass concentrations in this agriculture intensive area.
基金The support of the S?o Paulo State University (UNESP)。
文摘In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus(C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon(Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources(water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation.
文摘The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure.
基金funded by the CITIC-CBMM R & D Subject Foundation(2010-D046).
文摘The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown that the interstitial elements, such as C and N, may be completely stabilized by the addition of Nb and Ti. With the increase of Nb and Ti contents ,the α + γ two phases gradually transfer to a single α-phase under a high temperature condition ,and the content of the carbide M23 C6 gradually decreases. The microstructure has indicated that the combined addition of Nb and Ti can promote the recrystallization of the band structure and form more uniform equiaxed grains. Also, with the increase of Nb and Ti contents,the elongation, the r-value and the corrosion resistance of cold-rolled and annealed sheets are improved prominently. In comparison with the effect of Ti ,the addition of Nb is more beneficial to the increase of r-value and the corrosion resistance.
基金Key Technologies R&D Program of Tianjin (06YFGZGX02400)
文摘A copper-zinc alloy doped with rare earth elements was prepared and the mechanism was demonstrated in a simulating boiler and circulating cooling water with rigidity 1 mmol·L-1. The polar curve and scale inhibiting ability of the alloy was tested by a corrosion measurement system and a scale inhibition evaluation system, respectively. Scale samples were characterized with SEM and XRD. It is found that the transfer of cations could be promoted by doping with proper rare earth elements, and the corrosion potentials descend by 25~126 mV. The results indicated that the copper-zinc alloy doped with rare earth elements has higher scale inhibiting ability of CaCO3. The growth of calcite was affected by zinc ions dissolved because of primary battery reaction, and the transition of calcium carbonate from aragonite to calcite was hampered resulting in the proportion of aragonite to calcite is changed from 1.7∶1 to 2.7∶1.
基金funded by a grant from the Natural Science Foundation of China (project 41902084)a grant project (QNYC2018-1) from the Chinese National Nuclear Corporationa grant-aided open fund (project RGET1801) of the Key National Defense Subject Laboratory of Radioactive Geology and Exploration Technology, East China University of Technology
文摘Oil group separation,gas chromatography-mass spectrometry analysis of saturated hydrocarbons,carbon isotope analysis of fractions and tests on trace elements were all carried out to determine the origin of shallow Jurassic heavy oils in the northwestern margin of the Junggar Basin,northwestern China.Results showed that all the crude oils had been subjected to different degrees of biodegradation,on an order ranging from PM 6 to 9,which yielded many unresolved complex mixtures(UCM)and formed a huge spike in the mass chromatogram(M/Z=85).Two heavy oils from the Karamay area underwent slight biodegradation,characterized by the consistent ratios of biomarker parameters.C_(21)/C_(23)and C_(23)/H of the two samples were 0.81 and 0.85,while G/H,C_(27)/C_(29)and C_(28)/C_(29)were 0.38 and 0.40,0.16 and 0.27,0.87 and 0.86,respectively.The isomerization parameters of terpane and steranes were 0.50-0.53,and 0.48-0.49,respectively.The above geochemical indices indicated that the crude oils in the study area were in the marginally mature stage.The parent materials were a mixture,consisting of bacteria,algae and some higher plants,formed under reducing depositional conditions,which is in agreement with the source rocks of the Fengcheng Formation in the Mahu depression.The carbon isotopic compositions of saturated hydrocarbon,aromatic hydrocarbon,NSO and asphaltene were−31‰−to−30.3‰,−29.5‰to−29.03‰,−29.4‰to−28.78‰and−28.62‰to−28.61‰,respectively.These findings are in agreement with the light carbon isotope of kerogen from the lower Permian Fengcheng Formation.Furthermore,V/Ni and Cr/Mo of all the crude oils were 0.01 to 0.032,0.837 to 10.649,which is in good agreement with the ratios of the corresponding elements of the extracts from the Fengcheng Fm.carbonate source rock.As a result,a two-stage formation model was established:(1)the oil generated from the carbonate source rocks of the Fengcheng Formation migrated to the Carboniferous,Permian and Triassic traps during the Late Triassic,forming the primary oil reservoirs;(2)during the Late Jurassic period,the intense tectonic activity of Yanshan Episode II resulted in the readjustment of early deep primary reservoirs,the escaped oils gradually migrating to the shallow Jurassic reservoir through cross-cutting faults,unconformities and sand body layers.The oils then finally formed secondary heavy oil reservoirs,due to long-term biodegradation in the later stage.Therefore,joint methods of organic,isotopic and element geochemistry should be extensively applied in order to confirm the source of biodegradation oils.
文摘The effect of trace elements with zero self-interaction coefficient on crystallization temperature of iron carbon alloys was studied and the mathematic equation was developed based on thermodynamics in the present researeh. With the equation developed in this paper, the effects of nitrogen on crystallization temperature of Fe-3.45C-2.15Si0. 16Mn and Fe-3.45C-2. 15Si-0. 80Mn alloys were discussed.
文摘Compression tests on twenty unidirectional(UD) carbon fibre reinforced plastic(CFRP) specimens are conducted, the statistics on the measured compressive strength is calculated, and the fracture surface is characterized. Two types of different fracture surface are experimentally observed, and they are corresponding to very different values on the compressive strength. A finite element(FE) analysis is conducted to investigate the influence of random fibre packing on the compressive strength. And a riks method(provided in ABAQUS software) is applied in FE model to analyze fibre buckling behaviour in the vicinity of compressive failure. The FE analysis agrees well with the experimental observation on the two types of buckling modes and also the partition of compressive strength. It is clearly shown that the random fibre packing lays a significant influence on the random variability of compressive strength of CFRP.
基金supported by The National S&T Major Special Project(No.2011ZX05020-008)
文摘In this study,the gamma-ray spectrum of single elemental capture spectrum log was simulated.By numerical simulation we obtain a single-element neutron capture gamma spectrum.The neutron and photon transportable processes were simulated using the Monte Carlo N-Particle Transport Code System(MCNP),where an Am–Be neutron source generated the neutrons and thermal neutron capture reactions with the stratigraphic elements.The characteristic gamma rays and the standard gamma spectra were recorded,from analyzing of the characteristic spectra analysis we obtain the ten elements in the stratum,such as Si,Ca,Fe,S,Ti,Al,K,Na,Cl,and Ba.Comparing with single elemental capture gamma spectrum of Schlumberger,the simulated characteristic peak and the spectral change results are in good agreement with Schlumberger.The characteristic peak positions observed also consistent with the data obtained from the National Nuclear Data Center of the International Atomic Energy Agency.The neutron gamma spectrum results calculated using this simple method have practical applications.They also serve as an reference for data processing using other types of element logging tools.
基金This work was financially supported by the Foundation of the Future Industry of Shenzhen(Grant No.JCYJ20170413163838640)the Research and Development Project in Key Areas of Guangdong Province(Grant No.2020B010190002).
文摘Carbon nanotube(CNT)-reinforced composites have ultra-high elastic moduli,low densities,and fibrous structures.This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro-to macro-scales.The nanocomposites were modeled using representative volume elements(RVEs),and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs,which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites.When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites,the mechanical parameters and stress-strain curves of the composites on themacro-scale were obtained by endowing the elements of the lattice models withRVE parameters.Tensile experiments of the CNT-reinforced composites were also carried out.The validity of the finite element simulation method was verified by comparing the results of the simulations and experiments.Finite element models of functionally graded CNT-reinforced composites(FG-CNTRC)with different distributions were established,and the tensile and three-point-bending conditions for various graded material models were simulated by the methods of lattice model and birth-death element to obtain the tensile and bending parameters.In addition,the influence of the distribution and volume ratio of the CNTs on the performance of the graded composite material structures was also analyzed.
基金provided by the State Key Laboratory of Cryospheric Science Supporting Fund in China(Grant no.SKLCS-ZZ-2020)Innovative Research Group in China(Grant no.1110000001)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDA19070501)National Natural Science Foundation of China(Grant nos.41671063,41701071,41671073)。
文摘Elemental carbon(or black carbon)(EC or BC)aerosols emitted by biomass burning and fossil fuel combustion could cause notable climate forcing.Southern Hemisphere biomass burning emissions have contributed substantially to EC deposition in Antarctica.Here,we present the seasonal variation of EC determined from aerosol samples acquired at Zhongshan Station(ZSS),East Antarctica.The concentration of EC in the atmosphere varied between 0.02 and 257.81 ng·m^(-3)with a mean value of 44.87±48.92 ng·m^(-3).The concentration of EC aerosols reached its peak in winter(59.04 ng·m^(-3))and was lowest(27.26 ng·m^(-3))in summer.Back trajectory analysis showed that biomass burning in southern South America was the major source of the EC found at ZSS,although some of it was derived from southern Australia,especially during winter.The 2019–2020 Australian bush fires had some influence on EC deposition at ZSS,especially during 2019,but the contribution diminished in 2020,leaving southern South America as the dominant source of EC.
文摘The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.
基金supported by the National Natural Science Foundation of China-Shandong Joint Foundation(No.U1806211)。
文摘In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular elements varied widely among different phytoplankton.We found that temperature is one of the important factors affecting the carbon,nitrogen,and sulfur contents in phytoplankton cells;however,the degree of influence of temperature is different for different kinds of phytoplankton.By measuring the nitrogen content in cells,we found that the C:N ratio indirectly measured in the experiment fluctuated in the range of 3.50-8.97,and the average C:N ratio was 5.52.In this experiment,we accurately measured the cell elemental contents at different temperatures and transformed the cell count results into carbon,nitrogen,and sulfur contents to express the biomass.This method ensures that the contribution of species that are small in number but with a large cell volume in biomass is considered.Moreover,this method comprehensively considers the interspecific differences of species and the uneven distribution of elements in phytoplankton cells,which is of significance in the estimation of marine carbon and nitrogen budget.The distribution of nitrogen content in marine phytoplankton can well indicate the marine eutrophication caused by human activities.Climate change can affect the community structure and element composition of marine phytoplankton,meanwhile marine carbon and nitrogen element can regulate the climate to a certain extent.
文摘The objective of this study was to evaluate the effects of elemental sulphur (S) and farmyard manure on soil pH, EC and N, S, P concentrations of tomato grown in a calcareous sandy loam soil. For this purpose, a pot experiment was conducted in greenhouse conditions. Sulphur was applied at 0, 50, 100, 150, 200, 400 mg kg~ and farmyard manure at 0, 3 ton da^-1 to the soil. Three weeks after applications, tomato seedlings were planted and 8 weeks later, the plants were harvested to determine N, S, P concentrations and dry matter yield. Soil pH and EC were determined in the soil samples taken at 3 different periods. Effects of sulphur and farmyard manure applications were not significant on N, P concentrations and dry matter yield of tomato plant. S concentration of tomato plant was increased by sulphur alone. Soil pH was decreased and soil EC was increased in both 2^nd and 3^rd soil sampling period by the sulphur applications. As a result of farmyard manure application, soil pH decreased in the 2^nd soil sampling period but increased in the 3^rd soil sampling period. Also, soil EC was significantly increased in 1^st and 3^rd soil sampling period. Farmyard manure had no significant effect on S supply to tomato plant. The N:S ratio of tomato plant was decreased by sulphur alone. However, the sulphur with farmyard manure applications decreased N:S ratio in lesser extend compared to the S applications.