Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential...Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential extraction procedures(SEPs) have been widely applied for extraction of various geochemical phases from sediments. To choose a suitable SEP for phase extraction of sediments from the above Quaternary sedimentary shelf, efficiency and selectivity experiments were conducted on typical individual minerals and the applicability of each SEP was assessed for natural sediments(the natural sediment standard GSD-9 and three surface sediment samples). The geochemical represented elements(Ca, Fe, Mn, Al, and Ti) were measured using both SEPs. Both SEPs have good dissolution efficiency and selectivity for the targeted geochemical phases; the optimized extractant volume for each fraction was determined. The Tessier SEP is particularly recommended for the study of adsorption-desorption process. The application of the Tessier SEP to surface sediments can furnish valuable information, including the productivity conditions(via the reducible fraction Mn) and sedimentary environments(via the carbonate fraction Ca). These results confirm that the Tessier SEP is suitable for elemental fractionation in sediments from the Chinese continental shelf.展开更多
The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady os...The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.展开更多
A new nonlinear force model based on experimental data is proposed to replace the classical Hertzian contact model to solve the fractional index nonlinearity in a ball bearing system. Firstly, the radial force and the...A new nonlinear force model based on experimental data is proposed to replace the classical Hertzian contact model to solve the fractional index nonlinearity in a ball bearing system. Firstly, the radial force and the radial deformation are measured by statics experiments, and the data are fitted respectively by using the Hertzian contact model and the cubic polynomial model. Then~ the two models are compared with the approximation formula appearing in Aeroengine Design Manual. In consequence, the two models are equivalent in an allowable deformation range. After that, the relationship of contact force and contact deformation for single rolling element between the races is cal- culated based on statics equilibrium to obtain the two kinds of nonlinear dynamic models in a rigid-rotor ball bearing system. Finally~ the displacement response and frequency spectrum for the two system models are compared quantitatively at different rotational speeds, and then the structures of frequency-amplitude curves over a wide speed range are compared qualitatively under different levels of radial clearance, amplitude of excitation, and mass of supporting rotor. The results demonstrate that the cubic polynomial model can take place of the Hertzian contact model in a range of deformation.展开更多
The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expresse...The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.展开更多
Extreme fractionation of elements and isotopes in mafic igneous rocks is abnormal in deciphering the source nature and melting conditions of mafic magmatism.Especially,identification of geochemically ultra-depleted ma...Extreme fractionation of elements and isotopes in mafic igneous rocks is abnormal in deciphering the source nature and melting conditions of mafic magmatism.Especially,identification of geochemically ultra-depleted mafic melts and their mantle sources has great bearing on the property of crust-mantle differentiation at plate margins.This is illustrated by extreme Hf-Nd isotope fractionation in ultrahigh-pressure eclogites from the Sulu orogen in east-central China.In addition to the previous finding of ultrahighεNd(0)values,we report here new data of whole-rock trace elements and Lu-Hf isotopes in eclogites and related rocks from the same region.The present results show extremely high Lu/Hf ratios and abnormally highεHf(0)values of up to 576 for the eclogites,significantly different from the garnet amphibolites and other eclogite-facies metamorphic rocks in the same orogen.This feature is coupled with the ultrahighεNd(0)values as well as the severe depletion of light rare earth elements(LREE)and high field strength elements(HFSE).Because HFSE and LREE are immobile in aqueous solutions and the effect of melt extraction is insignificant during the continental deep subduction,the extreme fractionation of Lu/Hf and Sm/Nd indicate their origination from a geochemically ultra-depleted mantle source.These eclogites have the depleted mantle Hf model ages of 1.27 Ga to 1.61 Ga,similar to the depleted mantle Nd model ages of 1.39 Ga to 1.67 Ga as previously reported.This suggests that the protolith of the extremely highεHf-εNd eclogites was a kind of mafic igneous rocks derived from fractional crystallization of geochemically ultra-depleted mafic melts,which were produced by partial melting of the highly refractory lithospheric mantle during a series of seafloor spreading initiation-failure cycles at a divergent plate margin after the breakup of supercontinent Columbia in the Early Mesoproterozoic.The mafic igneous rocks were located in a passive continental margin in the Late Paleozoic and experienced deep subduction and exhumation in the Triassic,giving rise to the presently studied eclogites.The ancient geochemical signatures were retained without considerable influence by mantle convection,providing insights into the nature of crust-mantle differentiation during the tectonic transition from supercontinental breakup to seafloor spreading beneath the sub-ridge lithospheric mantle.展开更多
The optimization of heat treatment and chemical composition for Inconel 718 alloy has been investigated uninterruptedly because of its excellent mechanical properties and metallurgical workability.The species , chemic...The optimization of heat treatment and chemical composition for Inconel 718 alloy has been investigated uninterruptedly because of its excellent mechanical properties and metallurgical workability.The species , chemical compositions and content of equilibrium phases of Inconel 718alloy in the temperature range of 600-1 100℃ were calculated by using thermodynamic software " Thermo-Calc " and the latest relevant datebase of Ni-base superalloys.A concept of elemental partitioning fraction was used to study the partitioning characteristics of alloying elements in each equilibrium phase at different temperatures , such as Ni , Cr , Fe , Nb , Mo , Al , Ti and C , and some calculation results were confirmed under a scanning transmission electron microscope ( STEM ) .The results showed that the elemental partitioning characteristics with the change of temperature revealed the selective partitioning characteristic of alloying elements in equilibrium phases at different temperatures , such as Nb was mainly distributed in δ and γ′phase , C in carbides , Al and Ti in γ′phase and Cr , Mo in Laves phase.At the same time , the effect of the change of component and quantity for each precipitated phase on matrix phase can be helpfully understood , which provided a theoretic foundation to optimize the chemical composition and heat treatment in different environments for Inconel 718alloy.展开更多
In this study, the Pb/U fractionation between zircon and uraninite during femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry (fs-LA-ICP-MS) analysis was studied in detail. The results show signi...In this study, the Pb/U fractionation between zircon and uraninite during femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry (fs-LA-ICP-MS) analysis was studied in detail. The results show significant Pb/U fractionation between zircon and uraninite during fs-LA-ICP-MS analysis that when calibrated against the zircon standard M257, the obtained U-Pb age of the Chinese national uraninite standard GBW04420 is 17% older than the recommended value. Thus, the accurate in-situ U-Pb dating of uraninite by LA-ICP-MS requires matrix-matched external standards for calibration. Uraninite in thin sections of two U-mineralized leucogranite from the Gaudeanmus in Namibia was analyzed by a fs-LA-ICP-MS equipped with a Signal Smooth Device (SSD), using laser spot and frequency of 10 μm and 1 Hz, respectively. When calibrated using GBW04420 as the external standard, two samples give weighted mean 2066pb/238U ages of 504±3 Ma (2σ, n=21) and 503±3 Ma (2σ, n=22), and only one of two samples yields a concordia U-Pb age of 507±1 Ma (2or, n=21). These results are consistent with ID-TIMS U-Pb ages of 509±1 and 508±12 Ma and are also indistinguishable from zircon U-Pb upper intercept ages of 506±33 Ma (2σ, n=29) and 501±51 Ma (2σ, n=29). The present study shows that in-situ U-Pb dating of uraninite can deliver more reliable formation ages of the deposit than dating coeval high-U zircon because the latter commonly suffer significant Pb loss after formation. Our results confirm that GBW04420 is an ideal matrix matching standard for in-situ U-Pb dating of uraninite.展开更多
The role of number of grain size fractions on structural and mechanical properties of uniaxially com- pressed granular packings with a uniform particle size distribution in terms of number of particles and with variou...The role of number of grain size fractions on structural and mechanical properties of uniaxially com- pressed granular packings with a uniform particle size distribution in terms of number of particles and with various particle size dispersities was studied using the discrete element method. The study addressed packing density, coordination number, contact forces, global stress, and energy dissipation in assemblies composed of frictional spheres. Packing density was found to change with increasing num- ber of granulometric fractions in mixtures with a small ratio of the diameters of the largest to smallest particles. Results indicated a certain value of particle size ratio below which the number of particle size fractions strongly affected packing density. The average coordination number decreased with increasing number of fractions. Detailed analysis of the effect of particle size dispersity on mechanical coordination number, including particles with no less than four contacts, revealed that, contrary to the average coordi- nation number, the mechanical coordination number increased with increasing ratio of the diameters of the largest to smallest particles in the sample. The composition of polydisperse samples strongly affected stress distribution and energy dissipation in granular packings.展开更多
Manganese(Mn) deficiencies are common in soils on the Loess Plateau of China. This research provided essential information on improving Mn availability in semiarid soils through agricultural practices. Twelve cropping...Manganese(Mn) deficiencies are common in soils on the Loess Plateau of China. This research provided essential information on improving Mn availability in semiarid soils through agricultural practices. Twelve cropping system and fertilization treatments were designed in a 28-year experiment. The cropping systems included long-term fallow, continuous winter wheat cropping, pea(1 year)-winter wheat(2 years)-millet(1 year) rotation(crop-legume rotation) cropping, and continuous alfalfa cropping. The fertilizer treatments under the cropping systems included no-fertilizer control(CK), application of P fertilizer(P), application of N and P fertilizers(NP), and application of N and P fertilizers and manure(NPM), but the NP treatment was excluded in the continuous alfalfa cropping system. Available Mn and Mn fractions of soil samples(0–20 and 20–40 cm depths) were measured and further analyzed quantitatively using path analyses. Results showed that the crop-legume rotation and continuous alfalfa cropping systems significantly increased available Mn compared with the fallow soil. Compared with the no-fertilizer control, manure application increased available Mn in soil of the continuous wheat cropping system. Across all treatments, the averaged content of mineral-, oxide-, carbonateand organic matter-bound and exchangeable Mn accounted for 42.08%, 38.59%, 10.05%, 4.59%, and 0.09% of the total Mn in soil,respectively. Cropping significantly increased exchangeable Mn in soil and the highest increase was 185.7% in the continuous wheat cropping system at 0–20 cm depth, compared with the fallow soil. Fertilization generally increased exchangeable and carbonate-bound Mn in soil. Carbonate-bound Mn was the main and direct source of available Mn in soil, followed by exchangeable and organic matterbound Mn. These results indicated that crop-legume rotation cropping, continuous alfalfa cropping and application of manure, have the potential to promote Mn availability in soils of rainfed farmlands.展开更多
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element m...Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.展开更多
基金The National Natural Science Foundation of China under contract Nos 41530965,41276071 and 41003052the JSPS KAKENHI Grants under contract Nos JP26241009 and JP15H00973the Central Universities under contract Nos 201562008 and 201762031
文摘Surface sediments can integrate a wide variety of information of seawater in marginal seas, e.g., the Quaternary sedimentary shelf such as the East China Sea(ECS) and Yellow Sea(YS). The Tessier and BCR sequential extraction procedures(SEPs) have been widely applied for extraction of various geochemical phases from sediments. To choose a suitable SEP for phase extraction of sediments from the above Quaternary sedimentary shelf, efficiency and selectivity experiments were conducted on typical individual minerals and the applicability of each SEP was assessed for natural sediments(the natural sediment standard GSD-9 and three surface sediment samples). The geochemical represented elements(Ca, Fe, Mn, Al, and Ti) were measured using both SEPs. Both SEPs have good dissolution efficiency and selectivity for the targeted geochemical phases; the optimized extractant volume for each fraction was determined. The Tessier SEP is particularly recommended for the study of adsorption-desorption process. The application of the Tessier SEP to surface sediments can furnish valuable information, including the productivity conditions(via the reducible fraction Mn) and sedimentary environments(via the carbonate fraction Ca). These results confirm that the Tessier SEP is suitable for elemental fractionation in sediments from the Chinese continental shelf.
文摘The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.
基金Project supported by the National Basic Research Program(973 Program)of China(No.2015CB057400)the National Natural Science Foundation of China(No.11602070)+1 种基金the China Postdoctoral Science Foundation(No.2016M590277)the Heilongjiang Postdoctoral Financial Assistance(No.LBH-Z16067)
文摘A new nonlinear force model based on experimental data is proposed to replace the classical Hertzian contact model to solve the fractional index nonlinearity in a ball bearing system. Firstly, the radial force and the radial deformation are measured by statics experiments, and the data are fitted respectively by using the Hertzian contact model and the cubic polynomial model. Then~ the two models are compared with the approximation formula appearing in Aeroengine Design Manual. In consequence, the two models are equivalent in an allowable deformation range. After that, the relationship of contact force and contact deformation for single rolling element between the races is cal- culated based on statics equilibrium to obtain the two kinds of nonlinear dynamic models in a rigid-rotor ball bearing system. Finally~ the displacement response and frequency spectrum for the two system models are compared quantitatively at different rotational speeds, and then the structures of frequency-amplitude curves over a wide speed range are compared qualitatively under different levels of radial clearance, amplitude of excitation, and mass of supporting rotor. The results demonstrate that the cubic polynomial model can take place of the Hertzian contact model in a range of deformation.
基金Funded by the National Natural Science Foundation of China(51271147)
文摘The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.
基金supported by funds from the Strategy Priority Research Program(Category B)of Chinese Academy of Sciences(XDB0710000)the National Natural Science Foundation of China(42103037,42373046)the Fundamental Research Funds for the Central Universities.
文摘Extreme fractionation of elements and isotopes in mafic igneous rocks is abnormal in deciphering the source nature and melting conditions of mafic magmatism.Especially,identification of geochemically ultra-depleted mafic melts and their mantle sources has great bearing on the property of crust-mantle differentiation at plate margins.This is illustrated by extreme Hf-Nd isotope fractionation in ultrahigh-pressure eclogites from the Sulu orogen in east-central China.In addition to the previous finding of ultrahighεNd(0)values,we report here new data of whole-rock trace elements and Lu-Hf isotopes in eclogites and related rocks from the same region.The present results show extremely high Lu/Hf ratios and abnormally highεHf(0)values of up to 576 for the eclogites,significantly different from the garnet amphibolites and other eclogite-facies metamorphic rocks in the same orogen.This feature is coupled with the ultrahighεNd(0)values as well as the severe depletion of light rare earth elements(LREE)and high field strength elements(HFSE).Because HFSE and LREE are immobile in aqueous solutions and the effect of melt extraction is insignificant during the continental deep subduction,the extreme fractionation of Lu/Hf and Sm/Nd indicate their origination from a geochemically ultra-depleted mantle source.These eclogites have the depleted mantle Hf model ages of 1.27 Ga to 1.61 Ga,similar to the depleted mantle Nd model ages of 1.39 Ga to 1.67 Ga as previously reported.This suggests that the protolith of the extremely highεHf-εNd eclogites was a kind of mafic igneous rocks derived from fractional crystallization of geochemically ultra-depleted mafic melts,which were produced by partial melting of the highly refractory lithospheric mantle during a series of seafloor spreading initiation-failure cycles at a divergent plate margin after the breakup of supercontinent Columbia in the Early Mesoproterozoic.The mafic igneous rocks were located in a passive continental margin in the Late Paleozoic and experienced deep subduction and exhumation in the Triassic,giving rise to the presently studied eclogites.The ancient geochemical signatures were retained without considerable influence by mantle convection,providing insights into the nature of crust-mantle differentiation during the tectonic transition from supercontinental breakup to seafloor spreading beneath the sub-ridge lithospheric mantle.
文摘The optimization of heat treatment and chemical composition for Inconel 718 alloy has been investigated uninterruptedly because of its excellent mechanical properties and metallurgical workability.The species , chemical compositions and content of equilibrium phases of Inconel 718alloy in the temperature range of 600-1 100℃ were calculated by using thermodynamic software " Thermo-Calc " and the latest relevant datebase of Ni-base superalloys.A concept of elemental partitioning fraction was used to study the partitioning characteristics of alloying elements in each equilibrium phase at different temperatures , such as Ni , Cr , Fe , Nb , Mo , Al , Ti and C , and some calculation results were confirmed under a scanning transmission electron microscope ( STEM ) .The results showed that the elemental partitioning characteristics with the change of temperature revealed the selective partitioning characteristic of alloying elements in equilibrium phases at different temperatures , such as Nb was mainly distributed in δ and γ′phase , C in carbides , Al and Ti in γ′phase and Cr , Mo in Laves phase.At the same time , the effect of the change of component and quantity for each precipitated phase on matrix phase can be helpfully understood , which provided a theoretic foundation to optimize the chemical composition and heat treatment in different environments for Inconel 718alloy.
基金supported by the National Natural Science Foundation of China(Grant Nos.41203027 and 41473031)the State Administration of Foreign Expert Affairs of China(Grant No.B07039)the Special Fund for Basic Scientific Research of Central Colleges,China University of Geosciences(Wuhan)(Grant No.CUGL140403)
文摘In this study, the Pb/U fractionation between zircon and uraninite during femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry (fs-LA-ICP-MS) analysis was studied in detail. The results show significant Pb/U fractionation between zircon and uraninite during fs-LA-ICP-MS analysis that when calibrated against the zircon standard M257, the obtained U-Pb age of the Chinese national uraninite standard GBW04420 is 17% older than the recommended value. Thus, the accurate in-situ U-Pb dating of uraninite by LA-ICP-MS requires matrix-matched external standards for calibration. Uraninite in thin sections of two U-mineralized leucogranite from the Gaudeanmus in Namibia was analyzed by a fs-LA-ICP-MS equipped with a Signal Smooth Device (SSD), using laser spot and frequency of 10 μm and 1 Hz, respectively. When calibrated using GBW04420 as the external standard, two samples give weighted mean 2066pb/238U ages of 504±3 Ma (2σ, n=21) and 503±3 Ma (2σ, n=22), and only one of two samples yields a concordia U-Pb age of 507±1 Ma (2or, n=21). These results are consistent with ID-TIMS U-Pb ages of 509±1 and 508±12 Ma and are also indistinguishable from zircon U-Pb upper intercept ages of 506±33 Ma (2σ, n=29) and 501±51 Ma (2σ, n=29). The present study shows that in-situ U-Pb dating of uraninite can deliver more reliable formation ages of the deposit than dating coeval high-U zircon because the latter commonly suffer significant Pb loss after formation. Our results confirm that GBW04420 is an ideal matrix matching standard for in-situ U-Pb dating of uraninite.
文摘The role of number of grain size fractions on structural and mechanical properties of uniaxially com- pressed granular packings with a uniform particle size distribution in terms of number of particles and with various particle size dispersities was studied using the discrete element method. The study addressed packing density, coordination number, contact forces, global stress, and energy dissipation in assemblies composed of frictional spheres. Packing density was found to change with increasing num- ber of granulometric fractions in mixtures with a small ratio of the diameters of the largest to smallest particles. Results indicated a certain value of particle size ratio below which the number of particle size fractions strongly affected packing density. The average coordination number decreased with increasing number of fractions. Detailed analysis of the effect of particle size dispersity on mechanical coordination number, including particles with no less than four contacts, revealed that, contrary to the average coordi- nation number, the mechanical coordination number increased with increasing ratio of the diameters of the largest to smallest particles in the sample. The composition of polydisperse samples strongly affected stress distribution and energy dissipation in granular packings.
基金supported by the National Key Technology R&D Program of China(Nos.2015BAD22B01 and 2011BAD31B01)the Agricultural Comprehensive Development of Land Management and Science and Technology Promotion Project of Ningxia,China(No.NTKJ-2014-01)
文摘Manganese(Mn) deficiencies are common in soils on the Loess Plateau of China. This research provided essential information on improving Mn availability in semiarid soils through agricultural practices. Twelve cropping system and fertilization treatments were designed in a 28-year experiment. The cropping systems included long-term fallow, continuous winter wheat cropping, pea(1 year)-winter wheat(2 years)-millet(1 year) rotation(crop-legume rotation) cropping, and continuous alfalfa cropping. The fertilizer treatments under the cropping systems included no-fertilizer control(CK), application of P fertilizer(P), application of N and P fertilizers(NP), and application of N and P fertilizers and manure(NPM), but the NP treatment was excluded in the continuous alfalfa cropping system. Available Mn and Mn fractions of soil samples(0–20 and 20–40 cm depths) were measured and further analyzed quantitatively using path analyses. Results showed that the crop-legume rotation and continuous alfalfa cropping systems significantly increased available Mn compared with the fallow soil. Compared with the no-fertilizer control, manure application increased available Mn in soil of the continuous wheat cropping system. Across all treatments, the averaged content of mineral-, oxide-, carbonateand organic matter-bound and exchangeable Mn accounted for 42.08%, 38.59%, 10.05%, 4.59%, and 0.09% of the total Mn in soil,respectively. Cropping significantly increased exchangeable Mn in soil and the highest increase was 185.7% in the continuous wheat cropping system at 0–20 cm depth, compared with the fallow soil. Fertilization generally increased exchangeable and carbonate-bound Mn in soil. Carbonate-bound Mn was the main and direct source of available Mn in soil, followed by exchangeable and organic matterbound Mn. These results indicated that crop-legume rotation cropping, continuous alfalfa cropping and application of manure, have the potential to promote Mn availability in soils of rainfed farmlands.
文摘Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.