An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis sugges...An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.展开更多
Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical re...Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.展开更多
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient...Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.展开更多
Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distin...Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distinct adaptive strategies to increase reproductive success in changing alpine environments.To answer this question,we determined how spatial and temporal factors(e.g.,elevation and peak flowering time)affect reproductive success(i.e.,stigmatic pollen load)in nine wild Fagopyrum species(seven distylous and two homostylous)among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains,southwestern China.We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility,self-compatibility and pollen limitation in four Fagopyrum species(two distylous and two homostylous).We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads;lateflowering individuals had smaller flowers and lower pollen deposition.Stigmatic pollen deposition was more variable in distylous species than in homostylous species.Although seed set was not pollenlimited in all species,we found that fruit set was much lower in distylous species,which rely on frequent pollinator visits,than in homostylous species capable of autonomous self-pollination.Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.展开更多
Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study,...Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study, we analyzed species and phylogenetic diversity and community structures for woody and herbaceous plants along two elevational transects on Mt. Baekhwa, South Korea. The species richness and phylogenetic diversity of woody plants showed monotonic declining patterns with increasing elevation along all transects, whereas herbaceous plants showed different patterns, such as no relationship and a reversed unimodal pattern, between the study transects. The main drivers of these patterns were climate and habitat variables for woody and herbaceous plants, respectively. In addition, the phylogenetic community structure primarily showed phylogenetic clustering regulated by deterministic processes, especially environmental filtering, such as climate or habitat factors, along the two transects, although herbaceous plants along a transect depicted phylogenetic randomness as a result of a neutral process. Our findings suggest that deterministic and neutral processes may simultaneously control the community structures along small-scale elevational gradients such as local transects, although the deterministic process may be the predominant type.展开更多
Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients i...Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broadleaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.展开更多
It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this stu...It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.展开更多
The avifauna in Tajikistan has been widely studied for the last century,but specific work on species richness pattern along elevation gradients in Tajikistan is rarely investigated.Here,we reported the first study of ...The avifauna in Tajikistan has been widely studied for the last century,but specific work on species richness pattern along elevation gradients in Tajikistan is rarely investigated.Here,we reported the first study of bird species richness(BSR)in the high-altitude mountain systems(Tien Shan and Pamir-Alay)of Tajikistan which are very sensitive to the recent climate changes.We aim to explore the relationship of BSR pattern with elevation gradient and to determine the potential drivers underlying the patterns.We collected occurrence data from field surveys,published articles,and open access websites to compile a list of bird species along elevational gradients across the whole country.The BSR was counted by 100 m elevational bands ranging from 294 m to 5146 m.The patterns of BSR were calculated separately for five groups:all breeding birds,Passeriformes,Non-Passeriformes,large elevational range species,and small elevational range species.We calculated ecological and climatic factors of planimetric area,mid-domain effect(MDE),habitat heterogeneity(HH),mean annual temperature(MAT),temperature annual range(TAR),annual precipitation(AP),normalized difference vegetation index(NDVI),human influence index(HII),and human disturbance(HD)in each elevational band.A combination of polynomial regression,Pearson’s correlation,and general least squares model analyses were used to test the effects of these factors on the BSR.A unimodal distribution pattern with a peak at 750-1950 m was observed for all breeding birds.The similar pattern was explored for Passeriformes and Non-Passeriformes,while species with different elevational range sizes had different shapes and peak elevations.For all the breeding birds and Passeriformes,BSR was significantly related to spatial,climate and human influence factors,while BSR of Non-Passeriformes positively correlated with all the given factors.First,second and fourth range classes of birds were significantly correlated with human influence factors.Moreover,large-ranged species had positive correlations with the middomain effect and weakly with habitat heterogeneity.We found that area,MAT and AP were the main factors to explain the richness pattern of birds,and the species richness increases with these three factors increasing.Multiple factors such as area and climate explain 84%of the variation in richness.Bivariate and multiple regression analyses revealed a consistent influence of spatial and climate factors in shaping the richness pattern for nearly all bird groups.展开更多
From 700 m to 1900 m on the northern slope of Changbai Mountain, 13 plots with an interval of 100 m in elevation were investigated to study the variations of population structure and important value of the main edific...From 700 m to 1900 m on the northern slope of Changbai Mountain, 13 plots with an interval of 100 m in elevation were investigated to study the variations of population structure and important value of the main edificators along the elevation gradient. In their core distribution areas, most of the edificators had healthy population structure and could regenerate smoothly except Larix olgensis, but important value of Larix olgensis had no obvious variations with elevation changes, which showed that Larix olgensis had its own particularity and strong adaptability. At high elevation above 1800 m, Betula ermanii was the only species that could form a mono-dominant community. Important values of Pinus koraiensis and Acer mono had similar changing trends, and they had the similar ecological adaptabilities.展开更多
Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width...Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width and biomass chronologies across a range of elevations in the subalpine forests on the eastern slope of the Changbai Mountains.We used dendroclimatic analyses to study key factors limiting radial growth in L.olgensis and its variation with elevation.The statistical characteristics of chronologies suggested that elevation is a determinant of tree growth patterns in the study area.Response function analysis of chronologies with climate factors indicated that climate–growth relationships changed with increasing elevation:tree growth at high elevation was strongly limited by June temperatures of the previous year,and as elevation decreases,the importance of temperature decreased;tree radial growth at mid-elevation was mainly controlled by precipitation towards the end of the growing season of the current year.Biomass chronologies reflected a stronger climatic signal than tree-ring width chronologies.Spatial correlation with gridded climate data revealed that our chronologies contained a strong regional temperature signal for northeast China.Trees growing below timberline appeared to be more sensitive to climate,thus optimal sites for examining growth trends as a function of climate variation are considered to be just below timberline.Our study objective was to provide information for more accurate prediction of the growth response of L.olgensis to future climate change on the eastern slope of the Changbai Mountains,and to provide information for future climate reconstructions using this tree species in humid and semi humid regions.展开更多
Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter deco...Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.展开更多
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi...Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.展开更多
Background:To disentangle the controls on species distribution in the context of climate change is a central element in proposed strategies to maintain species diversity.However,previous studies have focused mainly on...Background:To disentangle the controls on species distribution in the context of climate change is a central element in proposed strategies to maintain species diversity.However,previous studies have focused mainly on the roles of abiotic factors(e.g.,climate and soil properties),with much less attention given to the roles of biotic factors such as functional traits.Here,we measured eight leaf traits for 240 individual trees of 53 species and analyzed the variation in traits and population composition indices and their relationships with soil properties,climate factors,and leaf traits.Results:The tree density,frequency and species importance values of the overall species and saplings significantly increased with increasing elevation,while the same indices(except for species frequency)of adults did not significantly change.The largest percentage of variation of species importance value(greater than 50%)was explained by climate,but leaf traits played a critical role in driving elevation distribution patterns of both saplings and adults;the abundance of saplings significantly increased with elevation,with increased leaf carbon contents,while the abundance of adults did not change in accordance with a nutrient conservation strategy associated with the leaf economic spectrum.Conclusions:Our results suggest that the elevation gradient distribution of woody plant species is dependent on tree size and that local atmospheric humidity and leaf traits cause considerable variation in species distribution along subtropical mountain elevations.We provide evidence of which leaf traits play a key role in the elevation gradient distribution of different sizes of woody tree species.展开更多
Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-c...Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-climate interactions is vital for mountainous ecosystems. Water-use efficiency (WUE) provides a useful index for understanding the metabolism of terrestrial ecosystems as well as for evaluating the degradation of grasslands. This paper explored net primary productivity (NPP) and WUE in grasslands along an elevational gradient ranging from 400 to 3,400 m asl in the northern Tianshan Mountains-southern Junggar Basin (TMJB), Xinjiang of China, using the Biome-BGC model. The results showed that: 1 ) the NPP increased by 0.05 g C/(m2-a) with every increase of 1-m elevation, reached the maximum at the mid-high elevation (1,600 m asl), and then decreased by 0.06 g C/(m2.a) per 1-m increase in elevation; 2) the grassland NPP was positively correlated with temperature in alpine meadow (AM, 2,700-3,500 m asl), mid-mountain forest meadow (MMFM, 1,650-2,700 m asl) and low-mountain dry grassland (LMDG, 650-1,650 m asl), while positive correlations were found between NPP and annual precipitation in plain desert grassland (PDG, lower than 650 m asl); 3) an increase (from 0.08 to 1.09 g C/(m2.a)) in mean NPP for the grassland in TMJB under a real climate change scenario was observed from 1959 to 2009; and 4) remarkable differences in WUE were found among different elevations, in general, WUE increased with decreasing elevation, because water availability is lower at lower elevations; however, at elevations lower than 540 m asl, we did observe a decreasing trend of WUE with decreasing elevation, which may be due to the sharp changes in canopy cover over this gradient. Our research suggests that the NPP simulated by Biome-BGC is consistent with field data, and the modeling provides an opportunity to further evaluate interactions between environmental factors and ecosystem productivity.展开更多
Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because...Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another,or among lineages.In this study,we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt.Gongga,the highest peak in the Hengduan Mountain Range in central China,and a mountain where comprehensive studies of avian diversity are still lacking.Methods:We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l.between 2012 and 2017.To test the relationship between bird species richness and environmental factors,we examined the relative importance of seven ecological variables on breeding season distribution patterns:land area(LA),mean daily temperature(MDT),seasonal temperature range(STR),the mid-domain effect(MDE),seasonal precipitation(SP),invertebrate biomass(IB) and enhanced vegetation index(EVI).Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.Results:A total of 219 bird species were recorded in the field,of which 204 were recorded during the breeding season(April–August).Species richness curves(calculated separately for total species,large-ranged species,and smallranged species) were all hump-shaped.Large-ranged species contributed more to the total species richness pattern than small-ranged species.EVI and IB were positively correlated with total species richness and small-ranged species richness.LA and MDT were positively correlated with small-ranged species richness,while STR and SP were negatively correlated with small-ranged species richness.MDE was positively correlated with large-ranged species richness.When we considered the combination of candidate factors using multiple regression models and model-averaging,total species richness and large-ranged species richness were correlated with STR(negative) and MDE(positive),while small-ranged species richness was correlated with STR(negative) and IB(positive).Conclusions:Although no single key factor or suite of factors could explain patterns of diversity,we found that MDE,IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories.Model-averaging indicates that small-ranged species appear to be mostly influenced by IB,as opposed to large-ranged species,which exhibit patterns more consistent with the MDE model.Our data also indicate that the species richness varied between seasons,offering a promising direction for future work.展开更多
Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity,especially for amphibians.However,the associated elevational gradients and underlying mechanisms of amphibian diversity in most moun...Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity,especially for amphibians.However,the associated elevational gradients and underlying mechanisms of amphibian diversity in most mountain systems remain poorly understood.Here,we explored amphibian phylogenetic and functional diversity along a 2600 m elevational gradient on Mount Emei on the eastern margin of the Qinghai-Tibetan Plateau in southwestern China.We also assessed the relative importance of spatial(area)and environmental factors(temperature,precipitation,solar radiation,normalized difference vegetation index,and potential evapotranspiration)in shaping amphibian distribution and community structure.Results showed that the phylogenetic and functional diversities were unimodal with elevation,while the standardized effect size of phylogenetic and functional diversity increased linearly with elevation.Phylogenetic net relatedness,nearest taxon index,and functional net relatedness index all showed a positive to negative trend with elevation,indicating a shift from clustering to overdispersion and suggesting a potential change in key processes from environmental filtering to competitive exclusion.Overall,our results illustrate the importance of deterministic processes in structuring amphibian communities in subtropical mountains,with the dominant role potentially switching with elevation.This study provides insights into the underlying assembly mechanisms of mountain amphibians,integrating multidimensional diversity.展开更多
The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknow...The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.展开更多
The campo rupestre sensu lato is a vegetation type that occurs in South American mountains,supports a distinctive flora characterized by high rates of endemism,high herbaceous species richness and often-neglected but ...The campo rupestre sensu lato is a vegetation type that occurs in South American mountains,supports a distinctive flora characterized by high rates of endemism,high herbaceous species richness and often-neglected but also species-rich of the arboreal stratum.We aimed to investigate how environmental factors and elevation are associated with the distribution and diversity of woody species in different rupestrian vegetation types across South America.Using a database of 2,049 woody species from 185 sites across four vegetation types within the campo rupestre,we assessed how the vegetation types were grouped according to their floristic composition and number of shared indicator species,as well as by using different beta diversity indices.The most important variables from a set of 27 variables(e.g.altitude,geo-edaphic and climatic)explaining species distribution were identified using redundancy analysis(RDA)and variation partitioning methods.The distribution of vegetation types was related to both environmental and spatial fractions,with a set of 17 variables retained(e.g.rockiness,grass cover and temperature seasonality as the most important variables).There was an association between the floristic composition of each vegetation type and the elevation range.Although the identified vegetation types are floristically related,they are distinguished by exclusive and habitat-specialist woody species.This uniqueness of vegetation types should be considered in terms of complementarity for the conservation of campos rupestres.展开更多
South Sinai includes Egypt’s highest mountains that resemble an ecological island surrounded by desert.The present study aims to analyse the vegetation physiognomy along the altitudinal and environmental gradients in...South Sinai includes Egypt’s highest mountains that resemble an ecological island surrounded by desert.The present study aims to analyse the vegetation physiognomy along the altitudinal and environmental gradients in the main wadi beds in South Sinai mountainous region.This includes determining the natural,native-weed and alien vegetation in representative stands in this region,analysing their vegetation in terms of species composition,abundance and life forms and determining the national and global distribution of the associated species.This investigation also aims to describe the prevailing plant communities and assess the role of environmental conditions that affect the vegetation in this region.Thus,thirty-two stands were chosen during March-June 2018 to reflect the prevailing altitude and environmental gradients.Total species was 316(229 genera and 61 families):186 species were perennials(58.9%),while 130 were annuals(41.1%).In addition,152 species were native weeds(48.1%of total species),31 were aliens(9.8%),along with 133 natural species(42.1%).Eight species were recorded as endemic to Egypt:Anarrhinum pubescens,Euphorbia sanctae-catharinae,Hypericum sinaicum,Origanum syriacum subsp.sinaicum,Phlomis aurea,Primula boveana,Rosa arabica and Solanum sinaicum.In addition,10 species were recorded as near-endemics to Egypt and other adjacent countries:Allium desertorum,Asclepias sinaica,Centaurea scoparia,Fagonia mollis var.hispida,Hyoscyamus boveanus,Iphiona mucronata,Micromeria sinaica,Pterocephalus sanctus,Salvia deserti and Stachys aegyptiaca.In the present study,33 species are threatened and categorized as follows:8 endangered,8 vulnerable and one indeterminate,while the rest were evaluated by the authors as rares.The rich plant diversity of this region is due to its extensive mountainous massif,which supports many microhabitats.The high elevations in this region hinder the dispersal process of propagules,a situation which often tends to increase endemic and near-endemic species.The current results were discussed and compared with some related previous studies.展开更多
Identifying how reproductive strategies such as the trade-off between clutch size versus egg mass vary with elevational gradients is essential for our understanding of life-history evolution.We studied lacertid lizard...Identifying how reproductive strategies such as the trade-off between clutch size versus egg mass vary with elevational gradients is essential for our understanding of life-history evolution.We studied lacertid lizards(Eremias argus)in China,from six populations at different altitudes,to assess elevational variation in reproductive strategy.We found significant between-population variation in maternal body size and clutch mass,but these variations were not explained by elevational differences.However,high-elevation females tended to produce smaller clutches of larger eggs compared with their low-elevation counterparts,demonstrating an elevational change in the trade-off between egg size and number.The egg size-number trade-off is a reproductive strategy that may favor large offspring,better enabling them to survive severe and unpredictable environments found at high elevations.展开更多
基金supported by the Sino-German Postdoc Scholarship Program of the China Scholarship Council(CSC)the German Academic Exchange Service(DAAD)+4 种基金supported in part by the National Natural Science Foundation of China(Nos.32071541,41971071)the Ministry of Science and Technology of China(Nos.2021FY100200,2021FY100702,2023YFF0805802)the Youth Innovation Promotion Association,CAS(No.2021392)the International Partnership Program,CAS(No.151853KYSB20190027)the“Climate Change Research Initiative of the Bavarian National Parks”funded by the Bavarian State Ministry of the Environment and Consumer Protection.
文摘An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.
文摘Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.
基金carried out in the framework of the 1331 Project of Cultural Ecology Collaborative Innovation Center in Wutai Mountain (00000342)co-financed by Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (2022J027)+1 种基金Applied Basic Research Project of Shanxi Province (202203021221225)Basic Research Project of Xinzhou Science and Technology Bureau (20230501)。
文摘Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.
基金supported by the National Natural Science Foundation of China(Nos.31900204,32071671,32030071)the Postdoctoral Research Foundation of China(grant no.2019M652674)the Fundamental Research Funds for the Central Universities(grant no.CCNU22LJ003).
文摘Reproductive strategies of sexually dimorphic plants vary in response to the environment.Here,we ask whether the sexual systems of Fagopyrum species(i.e.,selfing homostylous and out-crossing distylous)represent distinct adaptive strategies to increase reproductive success in changing alpine environments.To answer this question,we determined how spatial and temporal factors(e.g.,elevation and peak flowering time)affect reproductive success(i.e.,stigmatic pollen load)in nine wild Fagopyrum species(seven distylous and two homostylous)among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains,southwestern China.We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility,self-compatibility and pollen limitation in four Fagopyrum species(two distylous and two homostylous).We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads;lateflowering individuals had smaller flowers and lower pollen deposition.Stigmatic pollen deposition was more variable in distylous species than in homostylous species.Although seed set was not pollenlimited in all species,we found that fruit set was much lower in distylous species,which rely on frequent pollinator visits,than in homostylous species capable of autonomous self-pollination.Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.
基金funded by the Korea Green Promotion Agency, Korea Forest Service
文摘Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study, we analyzed species and phylogenetic diversity and community structures for woody and herbaceous plants along two elevational transects on Mt. Baekhwa, South Korea. The species richness and phylogenetic diversity of woody plants showed monotonic declining patterns with increasing elevation along all transects, whereas herbaceous plants showed different patterns, such as no relationship and a reversed unimodal pattern, between the study transects. The main drivers of these patterns were climate and habitat variables for woody and herbaceous plants, respectively. In addition, the phylogenetic community structure primarily showed phylogenetic clustering regulated by deterministic processes, especially environmental filtering, such as climate or habitat factors, along the two transects, although herbaceous plants along a transect depicted phylogenetic randomness as a result of a neutral process. Our findings suggest that deterministic and neutral processes may simultaneously control the community structures along small-scale elevational gradients such as local transects, although the deterministic process may be the predominant type.
基金supported by the National Key Basic Research Program of China (2014CB954100)Yunnan Provincial Foundation of Science and Technology (2014GA003)the QueenslandChinese Academy of Sciences Biotechnology Fund(GJHZ1130)
文摘Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broadleaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.
基金supported by the Key Project of National Key Research and Development Plans(Grant No.2016YFC0503106)
文摘It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.
基金funded by the National Science and Technology Major Project(2018ZX10101004)the Key Collaborative Research Program of the Alliance of International Science Organizations(ANSO-CR-KP-2020-04)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19050202)。
文摘The avifauna in Tajikistan has been widely studied for the last century,but specific work on species richness pattern along elevation gradients in Tajikistan is rarely investigated.Here,we reported the first study of bird species richness(BSR)in the high-altitude mountain systems(Tien Shan and Pamir-Alay)of Tajikistan which are very sensitive to the recent climate changes.We aim to explore the relationship of BSR pattern with elevation gradient and to determine the potential drivers underlying the patterns.We collected occurrence data from field surveys,published articles,and open access websites to compile a list of bird species along elevational gradients across the whole country.The BSR was counted by 100 m elevational bands ranging from 294 m to 5146 m.The patterns of BSR were calculated separately for five groups:all breeding birds,Passeriformes,Non-Passeriformes,large elevational range species,and small elevational range species.We calculated ecological and climatic factors of planimetric area,mid-domain effect(MDE),habitat heterogeneity(HH),mean annual temperature(MAT),temperature annual range(TAR),annual precipitation(AP),normalized difference vegetation index(NDVI),human influence index(HII),and human disturbance(HD)in each elevational band.A combination of polynomial regression,Pearson’s correlation,and general least squares model analyses were used to test the effects of these factors on the BSR.A unimodal distribution pattern with a peak at 750-1950 m was observed for all breeding birds.The similar pattern was explored for Passeriformes and Non-Passeriformes,while species with different elevational range sizes had different shapes and peak elevations.For all the breeding birds and Passeriformes,BSR was significantly related to spatial,climate and human influence factors,while BSR of Non-Passeriformes positively correlated with all the given factors.First,second and fourth range classes of birds were significantly correlated with human influence factors.Moreover,large-ranged species had positive correlations with the middomain effect and weakly with habitat heterogeneity.We found that area,MAT and AP were the main factors to explain the richness pattern of birds,and the species richness increases with these three factors increasing.Multiple factors such as area and climate explain 84%of the variation in richness.Bivariate and multiple regression analyses revealed a consistent influence of spatial and climate factors in shaping the richness pattern for nearly all bird groups.
基金This research was supported by Chinese Academy of Sciences '100 people'project National Natural Science Foundation of China (39970123) and Changbai Mountain Open Research Station.
文摘From 700 m to 1900 m on the northern slope of Changbai Mountain, 13 plots with an interval of 100 m in elevation were investigated to study the variations of population structure and important value of the main edificators along the elevation gradient. In their core distribution areas, most of the edificators had healthy population structure and could regenerate smoothly except Larix olgensis, but important value of Larix olgensis had no obvious variations with elevation changes, which showed that Larix olgensis had its own particularity and strong adaptability. At high elevation above 1800 m, Betula ermanii was the only species that could form a mono-dominant community. Important values of Pinus koraiensis and Acer mono had similar changing trends, and they had the similar ecological adaptabilities.
基金supported by the China Public Welfare Forest Project(No.200804001)
文摘Larix olgensis is a dominant tree species in the forest ecosystems of the Changbai Mountains of northeast China.To assess the growth response of this species to global climate change,we developed three tree-ring width and biomass chronologies across a range of elevations in the subalpine forests on the eastern slope of the Changbai Mountains.We used dendroclimatic analyses to study key factors limiting radial growth in L.olgensis and its variation with elevation.The statistical characteristics of chronologies suggested that elevation is a determinant of tree growth patterns in the study area.Response function analysis of chronologies with climate factors indicated that climate–growth relationships changed with increasing elevation:tree growth at high elevation was strongly limited by June temperatures of the previous year,and as elevation decreases,the importance of temperature decreased;tree radial growth at mid-elevation was mainly controlled by precipitation towards the end of the growing season of the current year.Biomass chronologies reflected a stronger climatic signal than tree-ring width chronologies.Spatial correlation with gridded climate data revealed that our chronologies contained a strong regional temperature signal for northeast China.Trees growing below timberline appeared to be more sensitive to climate,thus optimal sites for examining growth trends as a function of climate variation are considered to be just below timberline.Our study objective was to provide information for more accurate prediction of the growth response of L.olgensis to future climate change on the eastern slope of the Changbai Mountains,and to provide information for future climate reconstructions using this tree species in humid and semi humid regions.
基金supported by the National Natural Science Foundation of China(3157044531570601+2 种基金31500509 and31570605)Postdoctoral Science Foundation of China(2013M540714 and 2014T70880)Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangze River
文摘Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-06)
文摘Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.
基金supported by PhD Research Start-up Foundation of Tongren University(trxyDH1807,trxyDH1826,trxyDH1806)the Natural Science Foundation of Guizhou Provincial Department of Education([2019]075)+2 种基金the Science and Technology Project of Guizhou Province(ZK-[2021]221)the National Nature Sci-ence Foundation of China(31900271)the Key Laboratory Project of Guizhou Province([2020]2003).
文摘Background:To disentangle the controls on species distribution in the context of climate change is a central element in proposed strategies to maintain species diversity.However,previous studies have focused mainly on the roles of abiotic factors(e.g.,climate and soil properties),with much less attention given to the roles of biotic factors such as functional traits.Here,we measured eight leaf traits for 240 individual trees of 53 species and analyzed the variation in traits and population composition indices and their relationships with soil properties,climate factors,and leaf traits.Results:The tree density,frequency and species importance values of the overall species and saplings significantly increased with increasing elevation,while the same indices(except for species frequency)of adults did not significantly change.The largest percentage of variation of species importance value(greater than 50%)was explained by climate,but leaf traits played a critical role in driving elevation distribution patterns of both saplings and adults;the abundance of saplings significantly increased with elevation,with increased leaf carbon contents,while the abundance of adults did not change in accordance with a nutrient conservation strategy associated with the leaf economic spectrum.Conclusions:Our results suggest that the elevation gradient distribution of woody plant species is dependent on tree size and that local atmospheric humidity and leaf traits cause considerable variation in species distribution along subtropical mountain elevations.We provide evidence of which leaf traits play a key role in the elevation gradient distribution of different sizes of woody tree species.
基金funded by the National Natural Science Foundation of China (41271126)the National Basic Research Program of China (2009CB825105)
文摘Mountainous ecosystems are considered highly sensitive and vulnerable to natural disasters and cli- rnatic changes. Therefore, quantifying the effects of elevation on grassland productivity to understand ecosys- tem-climate interactions is vital for mountainous ecosystems. Water-use efficiency (WUE) provides a useful index for understanding the metabolism of terrestrial ecosystems as well as for evaluating the degradation of grasslands. This paper explored net primary productivity (NPP) and WUE in grasslands along an elevational gradient ranging from 400 to 3,400 m asl in the northern Tianshan Mountains-southern Junggar Basin (TMJB), Xinjiang of China, using the Biome-BGC model. The results showed that: 1 ) the NPP increased by 0.05 g C/(m2-a) with every increase of 1-m elevation, reached the maximum at the mid-high elevation (1,600 m asl), and then decreased by 0.06 g C/(m2.a) per 1-m increase in elevation; 2) the grassland NPP was positively correlated with temperature in alpine meadow (AM, 2,700-3,500 m asl), mid-mountain forest meadow (MMFM, 1,650-2,700 m asl) and low-mountain dry grassland (LMDG, 650-1,650 m asl), while positive correlations were found between NPP and annual precipitation in plain desert grassland (PDG, lower than 650 m asl); 3) an increase (from 0.08 to 1.09 g C/(m2.a)) in mean NPP for the grassland in TMJB under a real climate change scenario was observed from 1959 to 2009; and 4) remarkable differences in WUE were found among different elevations, in general, WUE increased with decreasing elevation, because water availability is lower at lower elevations; however, at elevations lower than 540 m asl, we did observe a decreasing trend of WUE with decreasing elevation, which may be due to the sharp changes in canopy cover over this gradient. Our research suggests that the NPP simulated by Biome-BGC is consistent with field data, and the modeling provides an opportunity to further evaluate interactions between environmental factors and ecosystem productivity.
基金supported by the National Natural Science Foundation of China Granted to Yongjie Wu(No.31501851,31772478)the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists to Per Alstrom(No.2011T2S04)
文摘Background:In biological systems,biological diversity often displays a rapid turn-over across elevations.This defining feature has made mountains classic systems for studying the spatial variation in diversity.Because patterns of elevational diversity can vary among lineages and mountain systems it remains difficult to extrapolate findings from one montane region to another,or among lineages.In this study,we assessed patterns and drivers of avian diversity along an elevational gradient on the eastern slope of Mt.Gongga,the highest peak in the Hengduan Mountain Range in central China,and a mountain where comprehensive studies of avian diversity are still lacking.Methods:We surveyed bird species in eight 400-m elevational bands from 1200 to 4400 m a.s.l.between 2012 and 2017.To test the relationship between bird species richness and environmental factors,we examined the relative importance of seven ecological variables on breeding season distribution patterns:land area(LA),mean daily temperature(MDT),seasonal temperature range(STR),the mid-domain effect(MDE),seasonal precipitation(SP),invertebrate biomass(IB) and enhanced vegetation index(EVI).Climate data were obtained from five local meteorological stations and three temperature/relative humidity smart sensors in 2016.Results:A total of 219 bird species were recorded in the field,of which 204 were recorded during the breeding season(April–August).Species richness curves(calculated separately for total species,large-ranged species,and smallranged species) were all hump-shaped.Large-ranged species contributed more to the total species richness pattern than small-ranged species.EVI and IB were positively correlated with total species richness and small-ranged species richness.LA and MDT were positively correlated with small-ranged species richness,while STR and SP were negatively correlated with small-ranged species richness.MDE was positively correlated with large-ranged species richness.When we considered the combination of candidate factors using multiple regression models and model-averaging,total species richness and large-ranged species richness were correlated with STR(negative) and MDE(positive),while small-ranged species richness was correlated with STR(negative) and IB(positive).Conclusions:Although no single key factor or suite of factors could explain patterns of diversity,we found that MDE,IB and STR play important but varying roles in shaping the elevational richness patterns of different bird species categories.Model-averaging indicates that small-ranged species appear to be mostly influenced by IB,as opposed to large-ranged species,which exhibit patterns more consistent with the MDE model.Our data also indicate that the species richness varied between seasons,offering a promising direction for future work.
基金supported by the National Natural Science Foundation of China(31770568,32071544)Natural Science Foundation of Shanghai(20ZR1418100)“Light of West China”Program of the Chinese Academy of Sciences。
文摘Mountain systems harbor an evolutionarily unique and exceptionally rich biodiversity,especially for amphibians.However,the associated elevational gradients and underlying mechanisms of amphibian diversity in most mountain systems remain poorly understood.Here,we explored amphibian phylogenetic and functional diversity along a 2600 m elevational gradient on Mount Emei on the eastern margin of the Qinghai-Tibetan Plateau in southwestern China.We also assessed the relative importance of spatial(area)and environmental factors(temperature,precipitation,solar radiation,normalized difference vegetation index,and potential evapotranspiration)in shaping amphibian distribution and community structure.Results showed that the phylogenetic and functional diversities were unimodal with elevation,while the standardized effect size of phylogenetic and functional diversity increased linearly with elevation.Phylogenetic net relatedness,nearest taxon index,and functional net relatedness index all showed a positive to negative trend with elevation,indicating a shift from clustering to overdispersion and suggesting a potential change in key processes from environmental filtering to competitive exclusion.Overall,our results illustrate the importance of deterministic processes in structuring amphibian communities in subtropical mountains,with the dominant role potentially switching with elevation.This study provides insights into the underlying assembly mechanisms of mountain amphibians,integrating multidimensional diversity.
基金Under the auspices of Special Projects of National Key Basic Research Program of China(No.2012CB426509)National Natural Science Foundation of China(No.40971285,31370497,31500409)Yunnan Innovation Talents of Science and Technology Plan of China(No.2012HC007)
文摘The decomposition of plant litter is a key process of litter decomposition to global climate warming in plateau in the flows of energy and nutrients in ecosystems. However, the response wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yurman Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate (K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C : N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important fimctions in biogeochemical cycling in cold highland ecosystems.
文摘The campo rupestre sensu lato is a vegetation type that occurs in South American mountains,supports a distinctive flora characterized by high rates of endemism,high herbaceous species richness and often-neglected but also species-rich of the arboreal stratum.We aimed to investigate how environmental factors and elevation are associated with the distribution and diversity of woody species in different rupestrian vegetation types across South America.Using a database of 2,049 woody species from 185 sites across four vegetation types within the campo rupestre,we assessed how the vegetation types were grouped according to their floristic composition and number of shared indicator species,as well as by using different beta diversity indices.The most important variables from a set of 27 variables(e.g.altitude,geo-edaphic and climatic)explaining species distribution were identified using redundancy analysis(RDA)and variation partitioning methods.The distribution of vegetation types was related to both environmental and spatial fractions,with a set of 17 variables retained(e.g.rockiness,grass cover and temperature seasonality as the most important variables).There was an association between the floristic composition of each vegetation type and the elevation range.Although the identified vegetation types are floristically related,they are distinguished by exclusive and habitat-specialist woody species.This uniqueness of vegetation types should be considered in terms of complementarity for the conservation of campos rupestres.
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia under Grant number R.G.P.1/73/40。
文摘South Sinai includes Egypt’s highest mountains that resemble an ecological island surrounded by desert.The present study aims to analyse the vegetation physiognomy along the altitudinal and environmental gradients in the main wadi beds in South Sinai mountainous region.This includes determining the natural,native-weed and alien vegetation in representative stands in this region,analysing their vegetation in terms of species composition,abundance and life forms and determining the national and global distribution of the associated species.This investigation also aims to describe the prevailing plant communities and assess the role of environmental conditions that affect the vegetation in this region.Thus,thirty-two stands were chosen during March-June 2018 to reflect the prevailing altitude and environmental gradients.Total species was 316(229 genera and 61 families):186 species were perennials(58.9%),while 130 were annuals(41.1%).In addition,152 species were native weeds(48.1%of total species),31 were aliens(9.8%),along with 133 natural species(42.1%).Eight species were recorded as endemic to Egypt:Anarrhinum pubescens,Euphorbia sanctae-catharinae,Hypericum sinaicum,Origanum syriacum subsp.sinaicum,Phlomis aurea,Primula boveana,Rosa arabica and Solanum sinaicum.In addition,10 species were recorded as near-endemics to Egypt and other adjacent countries:Allium desertorum,Asclepias sinaica,Centaurea scoparia,Fagonia mollis var.hispida,Hyoscyamus boveanus,Iphiona mucronata,Micromeria sinaica,Pterocephalus sanctus,Salvia deserti and Stachys aegyptiaca.In the present study,33 species are threatened and categorized as follows:8 endangered,8 vulnerable and one indeterminate,while the rest were evaluated by the authors as rares.The rich plant diversity of this region is due to its extensive mountainous massif,which supports many microhabitats.The high elevations in this region hinder the dispersal process of propagules,a situation which often tends to increase endemic and near-endemic species.The current results were discussed and compared with some related previous studies.
基金supported by grants from the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0501)China’s Biodiversity Observation Network(Sino-BON)。
文摘Identifying how reproductive strategies such as the trade-off between clutch size versus egg mass vary with elevational gradients is essential for our understanding of life-history evolution.We studied lacertid lizards(Eremias argus)in China,from six populations at different altitudes,to assess elevational variation in reproductive strategy.We found significant between-population variation in maternal body size and clutch mass,but these variations were not explained by elevational differences.However,high-elevation females tended to produce smaller clutches of larger eggs compared with their low-elevation counterparts,demonstrating an elevational change in the trade-off between egg size and number.The egg size-number trade-off is a reproductive strategy that may favor large offspring,better enabling them to survive severe and unpredictable environments found at high elevations.