期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An Improved Genetic Algorithm with Quasi-Gradient Crossover 被引量:4
1
作者 Xiao-Ling Zhang Li Du Guang-Wei Zhang Qiang Miao Zhong-Lai Wang 《Journal of Electronic Science and Technology of China》 2008年第1期47-51,共5页
The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into loca... The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver- gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms. 展开更多
关键词 Adaptive mutation arithmetic crossover elitist strategy genetic algorithm.
下载PDF
Hybridizing Artificial Bee Colony with Bat Algorithm for Web Service Composition
2
作者 Tariq Ahamed Ahanger Fadl Dahan Usman Tariq 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2429-2445,共17页
In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services ... In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services in response to the user needs and the level of Quality of Services(QoS)constraints.The challenge of this problem is the huge number of web services that achieve similar functionality with different levels of QoS constraints.In this paper,we introduce an extension of our previous works on the Artificial Bee Colony(ABC)and Bat Algorithm(BA).A new hybrid algorithm was proposed between the ABC and BA to achieve a better tradeoff between local exploitation and global search.The bat agent is used to improve the solution of exhausted bees after a threshold(limits),and also an Elitist Strategy(ES)is added to BA to increase the convergence rate.The performance and convergence behavior of the proposed hybrid algorithm was tested using extensive comparative experiments with current state-ofthe-art nature-inspired algorithms on 12 benchmark datasets using three evaluation criteria(average fitness values,best fitness values,and execution time)that were measured for 30 different runs.These datasets are created from real-world datasets and artificially to form different scale sizes of WSC datasets.The results show that the proposed algorithm enhances the search performance and convergence rate on finding the near-optimal web services combination compared to competitors.TheWilcoxon signed-rank significant test is usedwhere the proposed algorithm results significantly differ fromother algorithms on 100%of datasets. 展开更多
关键词 Internet of things artificial bee colony bat algorithm elitist strategy web service composition
下载PDF
An Improved Real-Coded Genetic Algorithm and Its Application
3
作者 Zhong-Lai Wang Ping Yang Dan Ling Qiang Miao 《Journal of Electronic Science and Technology of China》 2008年第1期43-46,共4页
Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow conver... Real-coded genetic algorithm(RGA)usually meets the demand of consecutive space problem.However,compared with simple genetic algorithm(SGA)RGA also has the inherent disadvantages such as prematurity and slow convergence when the solution is close to the optimum solution.This paper presents an improved real-coded genetic algorithm to increase the computation efficiency and avoid prematurity,especially in the optimization of multi-modal function.In this method,mutation operation and crossover operation are improved.Examples are given to demonstrate its com p utation efficiency and robustness. 展开更多
关键词 Adaptive mutation arithmetic crossover elitist strategy genetic algorithm.
下载PDF
Hybrid social cognitive optimization algorithm for constrained nonlinear programming 被引量:3
4
作者 SUN Jia-ze GENG Guo-hua +1 位作者 WANG Shu-yan ZHOU Ming-quan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2012年第3期91-99,共9页
To improve the global convergence speed of social cognitive optimization (SCO) algorithm, a hybrid social cognitive optimization (HSCO) algorithm based on elitist strategy and chaotic optimization is proposed to s... To improve the global convergence speed of social cognitive optimization (SCO) algorithm, a hybrid social cognitive optimization (HSCO) algorithm based on elitist strategy and chaotic optimization is proposed to solve constrained nonlinear programming problems (NLPs). The proposed algorithm partitions learning agents into three groups in proportion: elite learning agents, chaotic learning agents and common learning agents. The common learning agents work in the search way of traditional SCO, chaotic learning agents search via chaotic search (CS) algorithm based on tent map which helps to avoid the premature convergence, elite learning agents search via elitist selection which helps to improve the global searching performance. Additionally, a chaotic search process is incorporated into local searching operation so as to enhance the local searching efficiency in the neighboring areas of the feasible solutions. Simulation results on a set of benchmark problems show that the proposed algorithm has high optimization efficiency, good global performance, and stable optimization outcomes for constrained NLPs. 展开更多
关键词 SCO elitist strategy CS tent map NLPs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部