The performance of speaker verification systems is often compromised under real world environments. For example, variations in handset characteristics could cause severe performance degradation. This paper presents a...The performance of speaker verification systems is often compromised under real world environments. For example, variations in handset characteristics could cause severe performance degradation. This paper presents a novel method to overcome this problem by using a non linear handset mapper. Under this method, a mapper is constructed by training an elliptical basis function network using distorted speech features as inputs and the corresponding clean features as the desired outputs. During feature recuperation, clean features are recovered by feeding the distorted features to the feature mapper. The recovered features are then presented to a speaker model as if they were derived from clean speech. Experimental evaluations based on 258 speakers of the TIMIT and NTIMIT corpuses suggest that the feature mappers improve the verification performance remarkably.展开更多
文摘The performance of speaker verification systems is often compromised under real world environments. For example, variations in handset characteristics could cause severe performance degradation. This paper presents a novel method to overcome this problem by using a non linear handset mapper. Under this method, a mapper is constructed by training an elliptical basis function network using distorted speech features as inputs and the corresponding clean features as the desired outputs. During feature recuperation, clean features are recovered by feeding the distorted features to the feature mapper. The recovered features are then presented to a speaker model as if they were derived from clean speech. Experimental evaluations based on 258 speakers of the TIMIT and NTIMIT corpuses suggest that the feature mappers improve the verification performance remarkably.