In this paper,we address 3D inverse Cauchy issues of highly nonlinear elliptic equations in large cuboids by utilizing the new 3D homogenization functions of different orders to adapt all the specified boundary data.W...In this paper,we address 3D inverse Cauchy issues of highly nonlinear elliptic equations in large cuboids by utilizing the new 3D homogenization functions of different orders to adapt all the specified boundary data.We also add the average classification as an approximate solution to the nonlinear operator part,without requiring to cope with nonlinear equations to resolve the weighting coefficients because these constructions are owned many conditions about the true solution.The unknown boundary conditions and the result can be retrieved straightway by coping with a small-scale linear system when the outcome is described by a new 3D homogenization function,which is right to find the numerical solutions with the errors smaller than the level of noise being put on the over-specified Neumann conditions on the bottom of the cuboid.Besides,note that the new homogenization functions method(HFM)does not require dealing with the regularization and highly nonlinear equations.The robustness and accuracy of the HFM are verified by comparing the recovered results of several numerical experiments to the exact solutions in the entire region,even though a very large level of noise 50%is imposed on the over specified Neumann conditions.The numerical errors of our scheme are in the order of O(10^(−1))-O(10^(−4)).展开更多
This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the ...This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations.展开更多
This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ...This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.展开更多
We present a new method for the existence and pointwise estimates of a Green's function of non-divergence form elliptic operator with Dini mean oscillation coefficients.We also present a sharp comparison with the ...We present a new method for the existence and pointwise estimates of a Green's function of non-divergence form elliptic operator with Dini mean oscillation coefficients.We also present a sharp comparison with the corresponding Green5s function for constant coefficients equations.展开更多
In this paper, we prove higher integrability results for the gradient of the solutions of some elliptic equations with degenerate coercivity whose prototype is$ - {\rm div}\left( {a\left( {x,u} \right)Du} \right) = f$...In this paper, we prove higher integrability results for the gradient of the solutions of some elliptic equations with degenerate coercivity whose prototype is$ - {\rm div}\left( {a\left( {x,u} \right)Du} \right) = f$ in $D^' \left( \Omega \right),\,\,f \in L^r \left( \Omega \right),\,\,r > 1$where for example, a(x,u)=(1+|u|)^m/ with / ] (0,1). We study the same problem for minima of functionals closely related to the previous equation.展开更多
We show that for a class of second order divergence form elliptic equations on an infinite strip with the Dirichlet boundary condition,the space of fixed order exponential growth solutions is of finite dimension.An op...We show that for a class of second order divergence form elliptic equations on an infinite strip with the Dirichlet boundary condition,the space of fixed order exponential growth solutions is of finite dimension.An optimal estimation of the dimension is given.Examples also show that the finiteness property may not be true if one drops some of the conditions we make in our result.展开更多
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wav...The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.展开更多
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ...A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
The Sasa-satsuma(SS)dynamical equation interpret propagation of ultra-short and femto-second pulses in optical fibers.This dynamical model has important physical significance.In this article,two mathematical technique...The Sasa-satsuma(SS)dynamical equation interpret propagation of ultra-short and femto-second pulses in optical fibers.This dynamical model has important physical significance.In this article,two mathematical techniques namely,improved F-expansion and improved aux-iliary methods are utilized to construct the several types of solitons such as dark soliton,bright soliton,periodic soliton,Elliptic function and solitary waves solutions of Sasa-satsuma dynamical equation.These results have imperative applications in sciences and other fields,and construc-tive to recognize the physical structure of this complex dynamical model.The computing work and obtained results show the infuence and effectiveness of current methods.展开更多
We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be...We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.展开更多
Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutio...Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on.It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized method.展开更多
In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobi...In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weie...This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.展开更多
The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct m...The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.展开更多
基金This work was financially supported by the National United University[Grant Numbers T110M20600].
文摘In this paper,we address 3D inverse Cauchy issues of highly nonlinear elliptic equations in large cuboids by utilizing the new 3D homogenization functions of different orders to adapt all the specified boundary data.We also add the average classification as an approximate solution to the nonlinear operator part,without requiring to cope with nonlinear equations to resolve the weighting coefficients because these constructions are owned many conditions about the true solution.The unknown boundary conditions and the result can be retrieved straightway by coping with a small-scale linear system when the outcome is described by a new 3D homogenization function,which is right to find the numerical solutions with the errors smaller than the level of noise being put on the over-specified Neumann conditions on the bottom of the cuboid.Besides,note that the new homogenization functions method(HFM)does not require dealing with the regularization and highly nonlinear equations.The robustness and accuracy of the HFM are verified by comparing the recovered results of several numerical experiments to the exact solutions in the entire region,even though a very large level of noise 50%is imposed on the over specified Neumann conditions.The numerical errors of our scheme are in the order of O(10^(−1))-O(10^(−4)).
基金The project supported by National Natural Science Foundation of China under Grant No. 10447007 and the Natural Science Foundation of Shaanxi Province of China under Grant No. 2005A13
文摘This paper is devoted to the study of functional variable separation for extended nonlinear elliptic equations. By applying the functional variable separation approach to extended nonlinear elliptic equations via the generalized conditional symmetry, we obtain complete classification of those equations which admit functional separable solutions (FSSs) and construct some exact FSSs to the resulting equations.
文摘This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.
基金partially supported by National Research Foundation of Korea(NRF)Grant No.NRF-2019R1A2C2002724 and No.NRF-20151009350.
文摘We present a new method for the existence and pointwise estimates of a Green's function of non-divergence form elliptic operator with Dini mean oscillation coefficients.We also present a sharp comparison with the corresponding Green5s function for constant coefficients equations.
文摘In this paper, we prove higher integrability results for the gradient of the solutions of some elliptic equations with degenerate coercivity whose prototype is$ - {\rm div}\left( {a\left( {x,u} \right)Du} \right) = f$ in $D^' \left( \Omega \right),\,\,f \in L^r \left( \Omega \right),\,\,r > 1$where for example, a(x,u)=(1+|u|)^m/ with / ] (0,1). We study the same problem for minima of functionals closely related to the previous equation.
文摘We show that for a class of second order divergence form elliptic equations on an infinite strip with the Dirichlet boundary condition,the space of fixed order exponential growth solutions is of finite dimension.An optimal estimation of the dimension is given.Examples also show that the finiteness property may not be true if one drops some of the conditions we make in our result.
文摘The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.
文摘A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
文摘The Sasa-satsuma(SS)dynamical equation interpret propagation of ultra-short and femto-second pulses in optical fibers.This dynamical model has important physical significance.In this article,two mathematical techniques namely,improved F-expansion and improved aux-iliary methods are utilized to construct the several types of solitons such as dark soliton,bright soliton,periodic soliton,Elliptic function and solitary waves solutions of Sasa-satsuma dynamical equation.These results have imperative applications in sciences and other fields,and construc-tive to recognize the physical structure of this complex dynamical model.The computing work and obtained results show the infuence and effectiveness of current methods.
基金Project supported by Serbian Ministry of Education and Sciences (Grant No.III45010)UGC,NBHM,India (major research projects)+2 种基金BRNS,India (Young Scientist Research Award)ICTP,Italy (Junior Associateship)UGC (Rajiv Gandhi National Fellowship)
文摘We show how Jacobian elliptic functions (JEFs) can be used to solve ordinary differential equations (ODEs) describing the nonlinear dynamics of microtubules (MTs). We demonstrate that only one of the JEFs can be used while the remaining two do not represent the solutions of the crucial differential equation. We show that a kinkbtype soliton moves along MTs. Besides this solution, we also discuss a few more solutions that may or may not have physical meanings. Finally, we show what kind of ODE can be solved by using JEFs.
文摘Elliptic equation is taken as an ansatz and applied to solve nonlinear wave equations directly. More kinds of solutions are directly obtained, such as rational solutions, solitary wave solutions, periodic wave solutions and so on.It is shown that this method is more powerful in giving more kinds of solutions, so it can be taken as a generalized method.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312.
文摘In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.
基金supported by the Open Project of Key Laboratory of Mathematics Mechanization,CAS under Grant No.KLMM0602
文摘This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation.Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations.
文摘The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.