A numerical study was conducted for the fully developed laminar flow in rotating curved elliptical pipe. Due to the rotation, the Coriolis force can also contribute to the secondary flow. The interaction of rotation a...A numerical study was conducted for the fully developed laminar flow in rotating curved elliptical pipe. Due to the rotation, the Coriolis force can also contribute to the secondary flow. The interaction of rotation and curvature complicates the flow characteristics. The boundary-fitted coordinate was adopted to study the flow characteristic in the rotating systems. The effects of rotation on the flow transition were studied in detail. The generation and mergence of vortices in rotating curved elliptical pipes were also captured for the first time. The simulation results show that the flow for the case of large aspect ratio of the cross-section is more likely to be unstable than that for smaller one.展开更多
The fully developed laminar flow in helical elliptical pipes is influenced by curvature, torsion and aspect ratio of cross-section. With the aid of the symbolic manipulation technique, the governing equations were sol...The fully developed laminar flow in helical elliptical pipes is influenced by curvature, torsion and aspect ratio of cross-section. With the aid of the symbolic manipulation technique, the governing equations were solved by the Galerkin method, The procedures of implementing the Galerkin method for flows in curvilinear pipes were discussed. The effects of the aspect ratio and torsion on the flow structure, wall shear stress and flow ratio were examined in detail. The results show that the flow characteristic for aspect ratio larger than unit is quite different from those for the aspect ratio smaller than unit.展开更多
The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied.The numerical results are compared with the experimental data,to verify the numerical metho...The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied.The numerical results are compared with the experimental data,to verify the numerical method.The effects of the inlet water mass flow rate,the structural parameters,the helical pitch and the radius ratio on the heat transfer performances are investigated.Performances of the secondary fluid flow with different radius ratios are also investigated.Numerical results demonstrate that the heat transfer coefficient and the Nusselt number increase with the increase of the water mass flow rate or the helical pitch.The maximum heat transfer coefficient and the maximum Nusselt number are obtained when the radius ratio is equal to 1.00.In addition,the fluid particle moves spirally along the pipe and the velocity changes periodically.The particle flow intensity and the spiral movement frequency decrease significantly with the increase of the radius ratio.Besides,the secondary flow profile in the horizontal spiral-coil pipe contains two oppositely rotating eddies,and the eddy intensity decreases significantly along the pipe owing to the change of curvature.The decreasing tendency of the eddy intensity along the pipe increases with the increase of the radius ratio.展开更多
基金the National Natural Science Foundation of China(Grant No: 10272096)
文摘A numerical study was conducted for the fully developed laminar flow in rotating curved elliptical pipe. Due to the rotation, the Coriolis force can also contribute to the secondary flow. The interaction of rotation and curvature complicates the flow characteristics. The boundary-fitted coordinate was adopted to study the flow characteristic in the rotating systems. The effects of rotation on the flow transition were studied in detail. The generation and mergence of vortices in rotating curved elliptical pipes were also captured for the first time. The simulation results show that the flow for the case of large aspect ratio of the cross-section is more likely to be unstable than that for smaller one.
基金Project supported by the National Natural Science Foundation of China (Grant No :10272096)
文摘The fully developed laminar flow in helical elliptical pipes is influenced by curvature, torsion and aspect ratio of cross-section. With the aid of the symbolic manipulation technique, the governing equations were solved by the Galerkin method, The procedures of implementing the Galerkin method for flows in curvilinear pipes were discussed. The effects of the aspect ratio and torsion on the flow structure, wall shear stress and flow ratio were examined in detail. The results show that the flow characteristic for aspect ratio larger than unit is quite different from those for the aspect ratio smaller than unit.
基金supported by the National Natural Science Foun-dation of China(Grant No.51475268)the National Key Basic Research Development Program of China(973 Program,Grant No.2007CB206903)
文摘The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied.The numerical results are compared with the experimental data,to verify the numerical method.The effects of the inlet water mass flow rate,the structural parameters,the helical pitch and the radius ratio on the heat transfer performances are investigated.Performances of the secondary fluid flow with different radius ratios are also investigated.Numerical results demonstrate that the heat transfer coefficient and the Nusselt number increase with the increase of the water mass flow rate or the helical pitch.The maximum heat transfer coefficient and the maximum Nusselt number are obtained when the radius ratio is equal to 1.00.In addition,the fluid particle moves spirally along the pipe and the velocity changes periodically.The particle flow intensity and the spiral movement frequency decrease significantly with the increase of the radius ratio.Besides,the secondary flow profile in the horizontal spiral-coil pipe contains two oppositely rotating eddies,and the eddy intensity decreases significantly along the pipe owing to the change of curvature.The decreasing tendency of the eddy intensity along the pipe increases with the increase of the radius ratio.